I Simpésio Brasileiro de Computacio e Miisica

A Visnal Programming Environment
for Constraint based Musical Composition

CAMILORUEDA
Ingenieria de Sistemas, Universidad Javeriana de Cali
Cali, A.A 26239 Colombia

ABSTRACT

We describe a visual programming environment called Niobé in
which the composer can easily construct and operate on template
musical structures defined by a set of relations. Niobé provides
primitives allowing the composer to graphically program arbitrary
constraints on some musical domain (harmonic, rhythmic, etc) and also
a mechanism for computing one or several instances of specific musical
structures whose elements satisfy the given constraints. The composer
can in this way construct a potentially large data base of different
musical structures, each having the same precisely defined properties,
Resulting structures can be visualized and hand modified in different
supplied music notation editors. Niobé has been carefully optimized
for computing sequences of harmonic or rhythmic elements. It uses the
graphical interface of PatchWork, the visual music composition
language developped at IRCAM in Paris. Niobé is implemented in
Common Lisp-CLOS and is extensible.

I. Introduction

We present Niobé , a graphical environment for rule based music composition. Niobé is
well suited to the incremental construction of musical structures obeying precisely defined
properties. Structures are built in Niobé either by setting control parameters of built-in relations
or by imposing a set of new user defined constraints. This way of regarding computation falls
within the realm of what is catled Constraint Satisfaction . Niobé is logically divided in two
components: A computational engin adapted for solving constraint satisfaction problems in the
musical domain and a graphical programming interface. We show how the composer can take
advantage of the interaction between these two components to interactively construct and refine
harmonic or rhythmic structures in an incremental process. That is, instances of roughly
specified structures computed by the system can be visually represented in suitable music
notation editors. The composer might then see the need to impose further melodic or harmonic
constraints which are used by niobé to compute new refined instances. Niobé runs on top of
PatchWork (Laurson, Duthen & Rueda, 1992), a graphical music composition language
adapted to the representation of preocesses as a sequence of functional transformations. We
describe how to exploit in niobé the two alternative ways of regarding programming,
constraint-oriented and functional, to effectively compute complex musical structures, Niobé is
entirely programmed in Common LISP-CLOS (Steele, 1990). Finally, we present some
examples of the usage of Niobé in real musical applications.

II. Background

92 XIV Congresso da Sociedade Brasileira de Computacio

Several music composition languages such as Pla (Schottstaedt, 1983) have been defined in
the past. These languages consider the compositional activity as divided in two basically
independent processes, a score defining scheduling of different types of events and a functional
part where structures are built by composition of transformations. In the latter, the composer is
responsible for programming the appropriate transformations leading to the desired structure.
This activity requires in general good programming skills. To alleviate somewhat the burden of
the interaction of the composer with the computer, these systems provide a library of predefined
transformations the composer can use as basic building blocks. In Common Music (taube,
1991), this idea is complemented with a sct of built-in pattern structures that the user regards as
templates for instanciating the desired structure. Though very powerful, this schemes leaves the
problem of having to decide appropriate ways of combining patterns and functions. In a broad
sense, all of these composition languages reflect the functional paradigm of the underlying
implementation language in which it is necessary to describe a desired result by making explicit
the way of achieving it. There are situations, however, in which it is not at all obvious to find
appropriate algorithms to compute structures that nevertheless admit simple descriptions.
Recently, the composition environment PatchWork (Laurson, Duthen & Rueda, 1992) has been
proposed as a way of easing the programming task by redefining it as a visual activity.A
program in this language is a graphical patch where boxes represent computations and links
between boxes define functional composition of transformations (see figure 1). As in the above
mentioned languages, a library of predefined boxes provide building blocks for programming.
Although we believe that giving composers an entirely visual programming environment is a
step in the right direction, this might not reduce significantly the programming effort in
situations where the actual musical processes are not conceived algorithmically (i.e as a
sequence of transformations) at the beginning but rather as evolving sets of precisely defined
relations. What is needed in this case is the capability to propose descriptions of structures in a
declarative manner, leaving to the system the task of actually computing them.

[e— <1 35 79 12 15 18 21 25 20>
| p———
— const i d
%horr‘ﬁd M
Llfund "nth I(:
nth-ouertones I
%horl_':_‘d M

Figure 1. A PatchWork patch computing a chord from a set of harmonics of a base note

Recently, a system based on this idea, called Echidna (Ovans, 1990), has been proposed to
support counterpoint generation.Echidna is not in itself a music composition language but
rather a general purpose declarative programming tool based on the principle of constraint
satisfaction. The rules of counterpoint are first stated as a set of constraints on (finite) values

| Simpdsio Brasileiro de Computacio e Misica

representing pitches and then Echidna is used to choose subsets of these satisfying the given
harmonic and melodic constraints.

The two approaches, functional and declarative, are complementary in the sense that for
certain type of material one or the other prooves to be more convenient. Qur research concern
has been to unify both ways of conceiving the process of constructing musical structures. Thew
underlying notion sustaining this aim is that of a partially instanciated musical structure
(PIMS). Loosely speaking a PIMS (Assayag & Rueda, 1993) is a generalization of a structure
in the functional sense whose elements are sets and augmented with a collection of relations or
constraints. In what follows we precise this notion and describe its implementation in Niobé .

IIi. The theory of PIMS

A PIMS is the basic building block for generating musical material. It is defined as the
structure <D, R, C> where D is a finite collection of finite sets (called Domains), R is a binary
relation on D and C is a set of constraints (relations) on D. Basically, Ris a structuring relation
on D whereas elements in C are filtering relations on elements od D. Constraints in C define
subsets of the cartesian product of the sets in some subset of D. Any element in the cartesian
product defined by a constraint ¢ of C is said to satisfy c. If all constraints in C define non
empty sets the PIMS is said to be (locally) consistent . A PIMS in which D contains only
singleton sets is called a PIMS instacnce . A PIMS exemplary is a consistent PIMS instance.

A Partial order can be defined on PIMS as follows: Let P=<D1, R, C> and Q=<D2, R, C>
be PIMS. If each cartesian product on D1 is contained in some product on D2 then P<Q. Given
a PIMS P, the PIMS instanciation problem consists in finding a PIMS exemplary E such that
E<P. Seen from this perspective a PIMS is a structure scheme representing the set of its
exemplary structures. The graph in the figure below represents a PIMS for the set of all three
note chords starting at any one of the notes in the set base (in MIDI), having consecutive
intervals taken from the sets int] , inf2 (in semitones), not containing octaves and positioned
within the register from 60 to 79 in MIDI.

base int1 int2

Cl:intl #12; C2: int2 % 12
C3:intl + int2 = 12; C4: base + intl +int2 <79
R: base-> intl-> int2; D: {base, intl, int2}
Figure 2. A PIMS

3.1 Structure instanciation by arc consistency.

94 XIV Congresso da Sociedade Brasileira de Computacio

Building musical material can thus very genarally be seen as a two step process, first
constructing a suitable PIMS and then solving the PIMS instanciation problem on it. For the
latter we use in Niobé arc consistency techniques. These are well known algorithms in the
constraint satisfaction field aiming at improving the efficiency of finding a solution by trying to
reduce the given domains. Domains are reduced by insuring that constraints are locally
consistent. A constraint can be represented by a graph (see figure 2) having domains as nodes
and constraints as arcs linking those domains it constrains. An arc in this graph is said to be
consistent if for any element in any of the linked domains there can always be found elements in
the other linked domains such that all taken together satisfy the constraint. Values in the linked
domains not obeying this property can be eleminated, thus reducing domain sizes. Algorithms
for achieving arc consistency are described in (Mackworth, 1977). Recently, a more efficient
arc consistency procedure called AC-5 has been proposed in (Deville & Van Hentenryck,
1991). AC-5 runs in time proportional to the square of the biggest domain size, but can easily
be specialized to a linear time algorithm for useful categories of constraints. These are refered to
in (Deville & Van Hentenryck, 1991) as functional and monotonic constraints. Briefly stated,
these are constraints such that suitable representatives in each domain suffice to test the validity
of the constraint for the whole domain. Constraint C4 in figure 2 above is of this type. AC-5
forms the core of the structure instanciation scheme in Niobé . Additional optimizations are
considered by defining hierarchies on the PIM3 domains reflecting frequently encountered
musical constraints. One example is the problem of instanciating chord sequences structures
where constraints imposing particular melodic movements on the upper and lower voices are
frequently stated.Chord structures (PIMS) are thus supplied with an additional (hidden) domain
comprising possible sums of consecutive intervals in the chord. Melodic constraints can thus be
(automatically) redefined to act on the base note and sum-of-intervals domains avoiding the
need to look into each particular interval composition of a chord. Domains in Niobé are thus
trees allowing constraint impositions at any level. Figure 3 below shows an example this tree
for a chord intervals domain. A similar structuring technique has been proposed in Echidna
(Sidebotton & Havens, 1991) for representing constraints on real numbers.

Chord intervals domein: 8

lowest inlerval level:

minor

second Fifth

chord span
tevel:

15 23

O

chord chord ¢hord chord chord
set | set 2 set 3 set 4 set B
Figure 3. A structured domain

Musical constraints within a PIMS are in general conceived by the composer as having
different degrees of importance. We describe next a mechanism implemented in Niobé for
taking account of this fact.

3.2 Soft constraints in PIMS.

| Simposio Brasileiro de Computacio e Misica 95

Constraints in a PIMS can be assigned a degree of im j i
2 ' g portance. In Niobé this is si
3‘12]::5 l;itvlv)lcli:/?s Z_erot(usclcsrsl ﬁonstgamt) and one (required constraint). A (valeuatié)sn]?ui:cnt]il(a)lg iz
e instances. The value of an instance P is equal to one mi i
fle%;elecgsfg;_e rr;)(;is\t/jlsmlj))ortant %nsatisﬁed constraint ¢ in P.quobé conzr[l:x?tgss thhiegllx?slzovrgliﬂéczg
instar a y extending AC-5 with a process similar to th
rocedure used in several Artificial Intelligence applicati C ot ddpha beta
] Art i pplications such as
E;)r\rzxéallll]);,t;l;}ée Iélzl)s mitaﬁcxa?on problem is redefined as follows: Giveng:n}}’?lvtlrse(i’ s%&;}rgha.
] e Q<P such that, for any other PIMS instance R<P, Valuation (R)<Val, 4
A de(tial'led é\cgpunt of this way of handling constraint preferences (or soft (cozlgt‘:giz?sogafxqb)é
found in (Schiex, 1992). In Niobé , both the degree of importance of constraints and the

minimum value requiered of a solution are user controlled
. L = O3 arameters. We
interface of Niobé looking into the details of some examplI::s. develop next the user

3.3 Using Niobé.

Niobé isimplemented in Common Lisp-CLOS. A PIMS, its domai i
CLOS objects. A graphical interface in ParchWork is s’uppli(::(rila}r(l;ag(?ncs(t)rnusg?rlxmsaarg
parameterizing these objects and for triggering the instanciation mechanism. PIMS ins{gancn
can also be graphically interpreted, functionally transformed and displayed/edited in stand es
music notation by using suitable PrachWork editors. A PatchWork box (called harmo;irc
constraints in figure 4) representing Niobé defines entries for domains and constraint;
specifications. These entries consist of a set of parameters controllingtemplates of built-i
constraints and domains. In the example of figure 4, domains are sets of chords and the F’II\—/}ISl

to be computed is simply a sequence of chords obeyi i i i (
horizontal (melodic) constraints. The entry called a}snl(y)it:sy ng precise vertical (harmonic) and

[(U ¢ 7 112 10 €4 7 117 40 (47 97 587 I

interval-interp l(U (62 86> 40 (12 T16) 79 (0 24> 90 <0 36W|‘
-‘ " ronst - d
Tt ,m_fc,"u“ms [n-occords K0 ¢4 5> 40 <3 3 79 (4 55 90 (4 55
clons‘l] [ambT tus |[den=ite H const [
‘———Q Lalini-uvart J[int-hori e
1 T v e I 030 (47 11) 21 50 (23 5) 51 90 4
B] vs-sedil-repj[vi-fil t-hori const 5
const | ! fixed-notes |lrep—par—dens
X ranouwn~haut |11 t-pas-ban E:j
tE._E] InT7776rbla |[nbB-mouu77ok canst
[rE=dir=ck T——l
haraonic-consiraints E

Figure 4. The graphical interface of Niobé .

96 XIV Congresso da Sociedade Brasileira de Computagdo

is connected to a const box definining the global vertical span of the sequence. It covers two
octaves (62 to 86 in MIDI) in the first chord then goes to about 9 octaves (12 to 116) for the
40th chord and comes down to 3 octaves at the last chord (0 to 36). The span given for selected
chord numbers represent points of a linear interpolation computing the global span for the rest
of the chords. This thus gives the general form of the region where the chord sequence should
fit. The box connected to the entry int-vert (vertical intervals) defines the domain of intervals
(taken between consecutive notes) for the chords. For the first 40 chords only major third (4 in
semitones), fifth (7 in semitones) and/or major seventh (11) are allowed. In the middle of the
sequence very long intervals are demanded. The intended effect is to shift perception from
harmonic to melodic. At the end of the sequence the original intervals return. Entry int-vert-filt
defines any filtering relation on the interval contents of each chord. Here only the elimination of
octaves is imposed (by the predicate (not (ints 12))).Densite is just the number of allowed
notes in each chord. Here either 4 or 5 notes (as Niobé likes it) in each chord is established for
all but the middle of the sequence where exactly 3 note chords are demanded, the reason being
to precisely control melodic movement of each of the three voices in this part of the sequence.
Melodic control is done at the int-hori (horizontal intervals) entry of the box. Here the same
intervals of major third, fifth and major seventh (4, 7, 11) are imposed horizontally for the
upper and lower voices in most of the sequence, except in the middle where intervals of a
second, minor third and fourth (3, 5, 8) are actually requiered horizontally for each one of the
three voices. Although not shown in this example, melodic movement can be further controlled
by drawing break-point functions defining curves to be followed by the highest point of each
chord. Other entries (not used in the example) can define parallel or contrary movement of
voices (entry nb-mouv//ok), chord intervals contents as a function of register (filt-pas-band) or
lower bounds on the total number of different notes in arbitrary sections of the sequence
(renouv-haut). Figure 5 shows part of a sequence computed by Niobé from the constraints
specification of figure 4. The rhythm has been

Eﬂ J -120
1
4 & 45 & 4 4 &4 88 ¢ & & 4 a8 s 48 4 & & 4§ L:
f = e . "_HJ;*E
T=r= 4 SE=STe
= Sod ke Uaieaie-a | ol o | y
s Lan LS sRsRES
=
i
3 Jsmo
o of o o o & d 5 A G A ¢ S 4 9 o o A o B R R W Y W R Y e o
WENY 3 =F
=
0 & = =8
=
-8 e G- i
S = ==
L == =i & et L
Figure 5.

| Simpésio Brasileiro de Computacio e Misica 97
>

arbitrarily set (in one of the entries to the 7z box) to eighth notes. The above example solves a
chord sequence generation problem by a simple adjustment of parameters of built-in harmonic
and melodic constraints. This is only one way of proceeding. The composer can draw any
patch computing an arbitrary constraint and then connect it to one of the entries of the harmonic-
constraints box. niobé will then compute instances of the sequence taking into account the new
constraint. Figure 6 shows one example, used by the italian composer Marco Stroppa to
compute a sequence of chords following a given progression of homogeneity , defined as the
difference between the biggest and smallest chord intervals. The patch to the left of the figure
takes in the parameter box the current chord proposed by Niobé and also its position in the
sequence. The patch computes the homogeneity of the chord and tests it against the acceptable
range desired for a chord in that position of the sequence (see box interval-interp), giving
TRUE (acceplable chord) or NIL (non-acceptable) accordingly.

1V. Conclusions.

We have described Niobé , a music composition system integrating the relational and
functional conceptions of programming through the use of a visual programming environment.
Niobé has successfully been used by several composers to compute harmonic and rhythmic
sequences. A refined

hord intervals l]] Ehu—d index |
- pargrey

: e
I -b I : I
Lon] ecifitenz | e Zt{:‘l:

get-slot I‘ xs |
<D <B 9> 12 <D 23) l

interval-interp

I—lllsl 1 l Tist
1 9 X 4p
1229 (4> L—r‘r—”? Nzz | 1_r =
RV 24 7 119 JpVi =

2 | g '.'_‘___.__Jli;_'._ E

! list u I-—n!hl:

posn-match

hil

nil

a

il

il

patch

fung €

pil

l

[patch]p

3L

|[user-constrail

ihormonic-consiraints

E

S

cans irg int

E

Homogenzity {difference
batwaan mon wnd rin
hord intervals

Figure 6.

version of the example in figure 4 was used by the french composer Antoine Bonnet in his
piece Epitaphe. The german composer Michael Jarrell has used Niobé to generate melodic
sequences for his piece Rhyzomes -1V . We are currently studying more uniform models of
integrating the functional (and object-oriented) and relational aspects in Niobé . Although Niobé
has proved to be reasonably efficient (a few minutes in a Mac Quadra 700 for computing
sequences of less than a hundred chords) in several practical situations, we have accomplished
that at the price of restricting the allowed types of horizontal constraints. We are exploring
different optimizations of the base algorithm to allow the specification of more global vertical or
horizontal relations.

References

Assayag, G. & Rueda, C. (1993). The Music Representation Project at IRCAM. Proceedings
of t he

98 XIV Congresso da Sociedade Brasileira de Computacio

ICMC . Tokyo, 1993.]])
Deville, Y. & Van Hentenryck, P. (1991). An Efficient Arc Consistency Algorithm fora Class
of CSP

Problems. Proceedings of the IICAI . Sydney, 1991.
Lurson,M. Duthen, J & Rueda, C. (1992). The PatchWork Reference Manual. IRCAM , 1992.
Mackworth, A. (1977). Consistency in Networks of Relations. Artificial Intelligence . 99-118.
Ovans, R. (1990). Music Composition as a Constraint Satisfaction Problem. Proceedings of
the ICMC .
Schiex,T. (1992). Possibilistic Constraint Satisfaction Problems or "How to Handle Soft
Constraints”.

CERT-ONERA . Personal e-mail communication.
Schottstaedt, B. (1983). Pla: A Composer's Idea of a Language. Computer Music Journal .
7(1).
Sidebotton, S & Havens, W. (1991). Hierarchical Arc Consistency Applied to Numeric
Processing in o

Constraint Logic Programming. CSS-IS TR 91-06 . Simon Fraser University, Burnaby,
Canada.
Steele, G. (1990). Common Lisp: The Language . Digital Press.)]
Taube, H. (1991). Common Music: A Music Composition Language in Common Lisp and
CLOS.

Computer Music Journal . 15(2).

| Simpésio Brasileiro de Computacio e Milsica 99

Incremental evaluation in a musical hierarchy

M. DESAINTE-CATHERINE
K. BARBAR and A. BEURIVE

LaBRI“
Université Bordeaur I
351, cours de la Libération
33405, Talence Cedex
France

myriam@labri.u-bordeaus. fr

Abstract

The work we present in this paper is a formalism of a dynamic computational model
in a hierarchy. We are interested in representing musical hierarchies and bindings
of characteristics (such as the mode, measure, tempo, duration, key, etc.) within
them in order to provide the composer a means to verify the consistancy of the piece
during the compositional process. The model transfers any modification from the
composer to the representation in an incremental way, without computing again the
whole hierarchy.

1 Introduction

The complexity of a musical piece can be organized in a hierarchical way based on its temporal structure.
Musical characteristics (such as the mode, measure, tempo, duration, key, etc.) can be defined at any
point of the hierarchy (that is any sub-piece). These characteristics are then bound together according to
the temporal structure and the musical rules imposed by the composer. We are interested in representing
musical hierarchies and bindings of characteristics within them in order to provide the composer a means
to verify the consistancy of the piece during the compositional process.

Our work may be situated between constraints propagation techniques and hierarchical representa-
tions & la Balaban. We are interested in designing the representation and the computation model which
is appropriate to it. From our point of view, a musical piece is an object that is composed of several
dimensions. Classic dimensions are time, frequency, timbre and volume. The variations of the values
in these dimensions are not independent from each other. The result of a musical analysis is exactly
a seb of correlations between variations within a single dimension and between different dimensions. In
order to formalize those correlations, we define several relational operators which are dedicated to specific
dimensions. The set of values in each dimension can then be structured in a hierarchical way using these
operators. Hierarchical way means that the object representing the structure is not always a simple tree,
but a directed acyclic graph (see the notions of shared occurrencies and repetitions of Mira Balaban
(Balaban 1993)). The originality of this work relative to the others based on hierarchical representations
is the addition of a semantics to the hierarchy. This semantics provides a very sound way to represent

17, aboratoire Bordelais de Recherche en Informatique — Unité de Recherche Associée au Centre National de la Recherche

