NGRESSO DA
DADE BRASILEIRA
MPUTACAO

Departamento de Cigncia da Com utacdo
niversidade Federal de Minas erais

Sociedade Brasileira de Computacéo

CNPq
FAPEMIG
FINEP

CAPES
FAPERGS
FAPESP
TELEMIG

UFMG

impésio Brasileiro de
omputacdo e Misica

DEDALUS - Acervo - IME

HARRRERRD

31000051659

I SIMPOSIO BRASILEIRO

DE COMPUTACAO E MUSICA = ¢

Caxambu — MG
01 a 05 de agosto de 1994

ANAIS

Editado por
Mauricio Alves Loureiro

Realizacdo

Escola de Miisica
Departamento de Ciéncia da Computagao
Universidade Federal de Minas Gerais

Promocéo

Sociedade Brasileira de Computacao

Cépias adicionais:

Universidade Federal de Minas Gerais
Escola de Misica

30.130-005 Belo Horizonte, Brasil
Telefone: (031) 222 2357

e-mail: mauricio@dcc.ufmg.br

UNIVERSIDADE DE SKO P
INSTITUTO DE mATEMATICA & Esnﬁrgl;gzx
BIBLIOTECA

DATA N.° DE CHAM!}\D/}M
SN

1109 A 2:

N.° DE TOMBO ‘\i)((/;/ <r;i7*’£iw i

= REGJSTRADG POR;
ST AV
e

I Simpésio Brasileiro de Computagéo e Misica (1.; 1994; Caxambu)

Anais do I Simpésio Brasileiro de Computagio e Misica, Caxambu,
de 01 a 05 de agosto de 1994. Editado por Mauricio Alves Loureiro.
UFMG. 1994.

I. Loureiro, Mauricio A., coord. II. Sociedade Brasileira de Com-
putagdo.

Prefacio

Congresso da Sociedade Brasileira de Computagdo. O Congresso de 1994 foi constituido
de dez grandes eventos, além de oito palestras de conferencistas convidados de interesse
geral e vérias palestras convidadas de interesse especifico dentro dos simpésios.

O aspecto politico teve grande destaque através do XXIV Seminario de Computagio na
Universidade (SECOMU). O SECOMU foi constituido de cinco painéis e da, criagdo de gru-
pos de trabalho que apresentaram recomendages para a defini¢do da politica tecnolégica
brasileira na nossa 4rea.

Na érea cientifica tivemos a apresentacéio de 46 trabalhos no XXI Seminario Integrado de
Software e Hardware (SEMISH), 24 trabalhos no VI Simpésio Brasileiro de Arquitetura de
Computadores (SBAC), 24 trabalhos no I Simpésio Brasileiro de Redes Neurais (SBRN),
34 trabalhos e 48 composigdes musicais no I Simpésio Brasileiro de Computagao e Miisica
(SBC&M), além dos trabalhos selecionados no VII Concurso de Teses e Dissertagdes (CTD)
e XIII Concurso de Trabalhos de Iniciagéo Cientifica (CTIC).

Na édrea académica tivemos 14 cursos na XIII Jornada de Atualiza¢io em Informaética
(JAI), e na drea de ensino de Ciéncia da Computagdo o II Workshop de Educagio em
Informética (WEI) promoveu o debate sobre avaliacio e currfculo dos cursos de computagio
e regulamentagéo da profissio, além de apresentar um volume contendo o Currfculo de
Referéncia da SBC e a descrigéio de 20 cursos de computagio no pafs.

O XIV Congresso foi realizado pelo Departaments de Ciéncia da Computagdo da Univer-
sidade Federal de Minas Gerais e promovido pela Sociedade Brasileira de Computagio.
Gostaria de agradecer a todas as pessoas envolvidas na organizagdo do Congresso, especi-
almente as pessoas do nosso Departamento, aos coordenadores de cada um dos dez eventos,
as comissOes de programa e de organizagio, aos avaliadores de artigos e aos estudantes de
graduagdo e de péds-graduacio dos nossos Cursos. Agradego também o suporte financeiro
do CNPq, FAPEMIG e FINEP ¢ o apoio da CAPES, FAPERGS, FAPESP, TELEMIG e
UFMG.

Belo Horizonte, junho de 1994

Nivio Ziviani

Coordenador do XIV Congresso da SBC

iii

% . . , 31
E com prazer que apresentamos os anais dos eventos cientificos que fazem parte do XIV . 1Y

H

Apresentacao

A produgéo brasileira em Computagéo e Mdsica (Computer Music) teve inicio na década
de 70 gragas a um pequeno ndmero de esforgos isolados, contando sempre com recursos
muito limitados. Hoje, o setor conta com a contribui¢io de um nidmero consideravel de
pesquisadores e musicos que tém trabalhado arduamente néo sé na producio de arte e
pesquisa, mas também na implementagéo e reconhecimento da Computagao e Musica na
comunidade académica.

No ano de 1993 foi criado o NUCOM — Niicleo Brasileiro de Computacio e Miisica — com
o objetivo de promover o desenvolvimento do setor no pafs, viabilizando o intercimbio e
o acesso a informagdo entre pesquisadores e artistas brasileiros dedicados & Computagio
e Musica. Com o I Simpésio Brasileiro de Computagio e Misica, o NUCOM vem pio s6
promover o encontro de artistas e pesquisadores brasileiros e estrangeiros, mas também
uma mostra da produgio brasileira e latino-americana dirigida & comunidade internacional
de Computagio e Misica.

Foram selecionados 34 artigos e 48 cormiposigdes por uma comisséo de programa formada por
pesquisadores e musicos brasileiros, alguns com residéncia fora do pafs, contando também
com a participagdo de 2 membros externos & comunidade brasileira. As composicdes foram
executadas em 6 concertos, para os quais o Simpdsio contou com a participagéo especial
do Grupo de Misica Contemporinea da UFMG.

Os organizadores do I Simpésio Brasileiro de Computagéo e Msica gostariam de expressar
uma profunda gratiddo as instituigdes que viabilizaram este evento: Sociedade Brasileira
de Computagio, Escola de Misica da UFMG, Pré-reitorias Académicas da UFMG, CNPq
(Conselho Nacional de Pesquisa), FAPEMIG (Fundagio de Amparo & Pesquisa do Es-
tado de Minas Gerais), Fundagdo Rockefeller, CCRMA (Center for Computer Research
in Music and Acoustics, University of Stanford, California), CRCA (Center for Research
in, Computing and the Arts, University of California, San Diego) e LIPM (Laboratdrio de
Investigacion e Producidn Musical, Buenos Aires).

Belo Horizonte, julho de 1994

Mauricio Alves Loureiro
Coordenador do I SBC&M

I SBC&M

Coordenador Técnico
Mauricio Alves Loureiro, Escola de Musica/UFMG

Comissdo de Artigos

Aluizio Arcela, CIC/UnB :
Eduardo Reck Miranda, Edinburg University, Escocia
Geber Ramalho, Université Paris VI, Franca

Jamary de Oliveira, Departamento de Misica/UFBA
Wilson de Padua de Paula Filho, DCC/UFMG

Comissio de Concertos

Conrado Silva, Departamento de Musica/UnB
Francisco Krépfl, LIPM

Mauricio Alves Loureiro, Escola de Musica/UFMG
Robert Willey, CRCA

vii

XIV Congresso da SBC

Coordenador Geral
Nivio Ziviani, DCC/UFMG

Sub-Coordenador
Mério Fernando Montenegro Campos, DCC/UFMG

Secretdria

Elissandra Barbosa, DCC/UFMG

Comissdo Organizadora

Antonio Otavio Fernandes, DCC/UFMG

Geraldo Robson Mateus, DCC/UFMG

José Nagib Cotrim Arabe, DCC/UFMG

Osvaldo Farhat de Carvatho, DCC/UFMG

Rafael Guilherme Rodrigues da Silva, DCC/UFMG
Virgilio Augusto Fernandes Almeida, DCC/UFMG

Apoio

Celso de Souza Lima, DCC/UFMG

Mércio Drumond Aradjo, DCC/UFMG

Maria Aparecida Scaldaferri Lages, DCC/UFMG
Mauricio Anténio de Castro. Lima, DCC/UFMG
Wagner Toledo Corréa, DCC/UFMG

Assessoria de Comunicagio

Claudia Graga da Fonseca, DCS/FAFICH/UFMG

ix

Sociedade Brasileira de Computacgao

Diretoria

Ricardo Reis — Presidente

Paulo Roberto Freire Cunha — Vice-Presidente

Edson C.B. Carvalho Filho — Vice-Presidente Adjunto
Cirano lochpe — Secretério Geral

Fliavio Rech Wagner — Secretério Geral Adjunto
Claudia Maria Bauzer Medeiros — 1% Secretaria
Miguel Jonathan — 12 Secretério Adjunto

Roberto da Silva Bigonha — 22 Secretério

Clarindo Isafas P. Silva e Padua — 22 Secretério Adjunto
Therezinha Souza da Costa — Tesoureira

Emmanuel Lopes Passos — Tesoureiro Adjunto

Conselho — Membros Titulares

Claudia Motta

Clésio Saraiva dos Santos
Daltro Nunes

Luiz de Castro Martins
Marcos Borges

Nivio Ziviani

Pedro Manoel da Silveira
Philippe Navaux

Siang Wun Song

Silvio Romero Lemos Meira

Conselho — Membros Suplentes

Alberto Henrique Frade Laender
Cldudio Kirner

Daniel Schwabe

Ricardo Anido

Sérgio Schneider

xi

Sumario

Sistemas e Linguagens para Sintese de Som, Processamento
de Sinais e Transformacao de Som 1

1 Modelling the Excitation Function to Improve Quality in LPC’s Resynthesis
Celso Aguiar 3

2 Sintese Aditiva de Tons Musicais através da Transformada Karhunen-Loéve
Jodo Fernando Marar, Edson dos Santos Moreira 9

3 The Synthesis of Complex Sonic Events by Functional Iterations
Agostino Di Scipio, Ignazio Prignano 15

4 Modular Programming of Instruments in cmusic
Carlos Cerana 21

5 On the Improvement of the Real-Time Performance of Two Fundamental

Frequency Recognition Algorithms i
Andrew Chot 27

6 A Linguagem SOM-A para Sintese Aditiva
Aluizio Arcela 33

7 Processador de Efeitos em Sinais Digitais de Audio
Mdrcio da Costa Pereira Branddo, Carlos Augusto Jorge Loureiro, Tiilio da Costa
Zannon 39

8 TracWave: Non-linear Dynamics as Timbral Constructs
Jonatas Manzolli 45

9 An Overview of Criteria for Evaluating Synthesis and Processing Techniques
David A. Jaffe 53

10 The Music Kit on a PC
David A. Jaffe, Julius O. Smith, Nick Porcarro 63

xiii

xiv SUMARIO

Sistemas de Notacao Musical

11 NotaCor — Impressédo de Partituras em Cores
Alex de Oliveira Meireles

12 Representacdo Angular para Notacio Musical
Edilson Eulalio Cabral

13 Positional Rhythmic Notation: an Implication for a Positional Theory of Rhythm
M. R. Moraes

Sistemas e Linguagens para Composigio

14 A Visual Programming Environment for Constraint Based Musical Composition
Camilo Rueda

15 Incremental Evaluation in a Musical Hierarchy
M. Desainte-Catherine, K. Barbar, A. Beurivé

16 CAMM — Automatic Composer of Musical Melodies
Eloi Fernando Fritsch, Rosa Maria Viccari

17 Interfaces Musicais — um Problema Antigo
Domingos Aparecido Bueno da Silva

18 Modelos Matematicos e Composi¢do Assistida por Computador, Sistemas Esto-
césticos e Sistemas Cadticos
Mikhail Malt

19 Synthesizing Music with Sampled Sound
YeeOn Lo, Dan Hitt

20 Um Ambiente de Auxilio a Composigao Musical
Alezandre Jonatan Bertoli Martins, André Luiz Costa Ballista, Marcelo Soares

Pimenta

21 Orquestrador MIDI Sinfénico
Osman Giuseppe Giota

22 Editor de Preceitos Intervalares
Ricardo Ribeiro de Faria Castro

71

73

79

83

89

91

99

107

121

125

133

139

147

155

SUMARIO xv

23 The SmOKe Music Representation, Description Language, and Interchange

Format
Stephen Travis Pope 161
Analise Musical, Educacao 167

24 Learning Counterpoint Rules for Analysis and Generation
Eduardo Morales, Roberto Morales-Manzanares 169

25 A System for Aiding Discovery in Musical Analysis
Edilson Ferneda, Carlos Alan Peres da Silva, Luciénio de Macédo Teizeira, Hélio
de Menezes Silva 177

26 An Integral Education Project: Musical Production
Ricardo Dal Farra 185

Inteligéncia Artificial, Psicoaciistica e Modelos Cognitivos 187

27 A Connectionist Model for Chord Classification
Fabio Ghignatti Beckenkamp, Paulo Martins Engel 189

28 The MusEs System: an Environment for Experimenting with Knowledge Repre-
sentation Techniques in Tonal Harmony
Francois Pachet 195

29 ARTIST: an Al-based Tool for the Design of Intelligent Assistants for Sound
Synthesis
FEduardo Reck Miranda ' 203

30 Representing Musicians’ Actions for Simulating Improvisation in Jazz
Geber Ramalho 217

Desempenho, Interface com o Usudrio e Projeto de
Instrumentos ' 223

31 A Phenomenological Study of Timbral Extension in Interactive Performance
Anna Sofie Christiansen 225

32 Um Novo Misico Chamado “Usuério”
Fernando Lazzetta 231

xvi SUMARIO

33 A New Technology for Musical Sound Synthesis and Control

Richard Hodges 237
34 Virtual Musical Instruments: Accessing the Sound Synthesis Universe as a

Performer

Azel Mulder 243
Indice por Autor 251

Sistemas e Linguagens para Sintese
de Som, Processamento de Sinais e

Transformagao de Som

| Simpésio Brasileiro de Computacio e Miisica

Modelling the Excitation Function to Improve
Quality in LPC’s Resynthesis.

CELSO AGUIAR
CCRMA - Center for Computer Research in Music and Acoustics.
Stanford University, Stanford, CA 94305-8180 USA.
aguiar@ccrma.stanford.edu

ABSTRACT

LPC (Linear Predictive Coding) is a well known technic for speech analysis-
synthesis. The analysis consists in finding a time-based series of n-pole IIR filters
whose coefficients better adapt to the formants of a speech signal. These
computations produce a residual signal which is the exact complement to the
information kept in the coefficients, if we wish to recover the original. The model of
the human vocal tract mechanism assumed by LPC presupposes that speech can be
reduced to a succession of voiced or unvoiced sounds. Thus, an excitation function
composed of pulse or noise substitutes the residual in the resynthesis. This
assumption is adequate for some tasks but, in a musical context, the artifacts
introduced can yield unsatisfactory results. This article proposes a simple alteration
in the model to improve the quality of LPC’s resynthesis. Some of the conventional
problems like "buzzy" quality and loss of coloration are partially cormected.

INTRODUCTION

The problem of quality in the resynthesis with linear prediction technics has already been noticed in the
Computer Music literature (Lansky, 1989) but not sufficiently addressed. Some of the critical problems
impeding the accomplishment of higher quality results are the general "buzzy" quality of the sounds (due to the
use of a band-limited pulse signal to model the voiced components in the speech), alterations in the coloration
of the original speech and loss of energy in the region of the fundamental.

These problems altogether are enough to remind us that the technic was not initially created to generate
high quality results as may be needed in Computer Music. Although quality and intelligibility were also an issue
in its first applications, LPC was basically created as an analysis technic for data reduction in speech
transmission. Under these conditions we must conclude that it would be necessary for the technic to undergo
some kind of adaptation or improvement if it is to be applied in its full potential for our purposes.

In this paper, the model employed by LPC to reproduce the human vocal-tract mechanism is described as
well as are discussed the reasons for the improvements here introduced. Due to the sufficient literature in the
field, only a brief description of the LPC technic is done. Finally, we present some sound examples that
demonstrate the ideas discussed.

THE LPC MODEL OF SPEECH REPRODUCTION

The main idea behind linear predictive coding is that a sample of speech can be approximated as a linear
combination of past speech samples. An inverse filter must be produced so that it matches the formant regions
of the speech under analysis. The coefficients for that filter are determined by minimizing the square difference
between the speech samples and the linearly predicted ones. The process of LPC analysis is nothing less than
the tentative application of this filter to the speech samples. These computations produce what is known as the

XIV Congresso da Sociedade Brasileira de Computacio

residual sound in this field of research.

The model used by linear prediction is the same as used conventionally in most of the models for the digital
representation of speech (Schaffer & Rabiner, 1975). It is fundamentally based on the human vocal-tract
mechanism, which can be thought as an acoustic tube terminated at one end by the vocal cords and at the other
by the buccal cavity and lips. The shape of this tube is determined by the position of its components like lips,
tongue, jaw and vellum.

The sound sources generated by the air pressure coming from the lungs can excite the vocal tract in several
ways. These can be divided in two basic types of excitation: quasi-periodic pulses which generate the voiced
sounds, and a noisy source which produces the unvoiced sounds of speech. Both types of excitation sources are
modelled by LPC and are represented by the two boxes in the diagram below (Fig. 1).

lpltch perlod

j filter coeflicients

pulse

_"\ p—
/ ()F dightal fiter [gpeecn

nolse amplitude

Fig. 1 - LPC’s digital processing model.

The main characteristic of that residual sound from LPC analysis described above is to be a close
approximation to the vocal tract input signal (Cann, 1985). If the formants are being extracted efficiently by the
filtering performed during the analysis, the residual should look like a combination of noise and a series of
pulses. LPC does not provide a way to gradually mix these two sources when modelling the excitation. The
boundary between voiced and unvoiced speech is precisely one of the places where artifacts are bound to appear
in LPC resynthesis.

The two sources cited above create a wide band excitation of the vocal tract that acts as a linear time-
varying filter (Fig. 1). This filter imposes its characteristics on the frequency spectra of the excitation sources.
The vocal tract is thus characterized by its natural resonances and is represented in the LPC model by the time
varying digital filter whose coefficients should match the formants present in the analyzed signal.

IMPROVING THE LPC MODEL

The experiments and conclusions reached in this research stem from a Voice Class course in the Spring of
’93 at CCRMA. Our initial project was just to improve the quality of some programs developed by Professor
Perry R. Cook to perform LPC analysis and resynthesis according to the autocorrelation method. The programs
were improved, a new pitch tracking routine was included but, when experimenting with sounds sampled at 44
kHz, we noticed that the quality of the resulting sounds would not improve as normally happens when dealing
with sampled sounds. On the contrary, the coefficients extracted from these 44 kHz sounds would do a worse
job than the ones extracted from the same files handled at 22 kHz. The same phenomena would manifest in
other LPC programs like CMix’s routines for performing the covariance method. A good explanation for this
fact is that the formants present in the speech will not change their position with the change in sampling rate.
When analysing at a higher sampling rate, we would find ourselves trying to do the job of extracting the same
formants, only that now we had more samples to handle and compute, as if trying to do the job in a less efficient
manner.

Another interesting observation that can be made about the LPC process is that if the residual is the precise
complement to the information kept by the coefficients then, the more our excitation function looks like the
residual the closer we will be to recovering completely the original signal. The problem with the direct use of
the residual in LPC is that it can only be used as it is, and only to recover the original. In other words, if we wish
to stretch our sound in time and try to do this by stretching the residual and feeding it back as the excitation

| Simpésio Brasileiro de Computacio e Miisica

function in the LPC algorithm, the artifacts introduced in the process of stretching the residual will propagate
into the resulting sound and the result is the same as stretching the original sound with the same method applied
to the stretching of the residual.

So, if the difference between excitation function and residual is what keeps us from recovering completely
the original, or at least coming close to do that, the residual would probably be able to contribute with an extra
amount of formant information that is not present in the conventional way of extracting the coefficients. With
this in mind, we included another stage in the LPC model in order to diminish the discrepancies between the
excitation function and the residual. The idea is to perform in the residual the same analysis done to the original
sound. The extra information extracted from the residual is then stored in the coefficients that result from the
second LPC analysis (Fig. 2).

itch period
b pe filter coefficients
from residual
filter coefficients
pulse l l from original
——\ & filter 1 filter 2
——/ T -
nolse amplitude

Fig. 2 - Improved LPC model including another filtering stage (residual coefficients) in cascade.

Other parameters used in the resynthesis process, like pitch, power and the information on the voiced or
unvojced content of the speech are extracted in the same way as before, from the original. This change in the
algorithm together with the adjustments performed in the frequency function resulting from pitch tracking (see
section below) have proved to be capable of recovering almost completely the characteristic of the original
sound. As we are not directly using the residual in the resynthesis step, but rather its formant information
expressed by its coefficients, the same possibilities that are present in the conventional LPC model are still
present in this modified model like time stretching or changing pitch independently from duration. It can be
argued that this change in the model will consume an extra amount of computing time (the double time to be
more exact). It is clear that the application of this improvement can be delayed until the end of the process of
obtaining the sounds in a composition, after all the choices have been made and as a means of enhancing the
result.

In our experiments we have also found out that increasing the number of stages and keeping constant the
number of poles (extracting the coefficients of the residual of the residual) will not yield any better results. This
should be happening probably because all the useful formant information has already been completely extracted
when we performed the analysis of the residual. Another possibility that we have not directly investigated in our
research would be to do a increase in the number of stages while analysing the sound with a smaller number of
poles.

IMPROVING THE QUALITY OF PITCH TRACKING

Another very important aspect of LPC analysis-resynthesis procedures that should also be stressed, is the
quality of the pitch tracking realized in the original sound. The quality of the sounds resulting from the
resynthesis depends entirely on the quality of the pitch tracking initially done on the sound.

The pitch detector developed by Professor Perry Cook and used in our programs is a lag-domain type of
pitch detector. It uses AMDF technic and refinements to determine the pitch of a quasi periodic sound. In this
pitch detector a delay line size is determined according to lower and higher pitch limits specified. For the female
voice used in our experiments the limits of 90 Hz and 525 Hz have been sufficient. In case of a male speaker the
lower limit can be adjusted to 50 Hz. The pitch tracking is also realized frame by frame. In our tests a frame and
hop size of 600 and 200 samples respectively (the same values for the equivalent parameters used in the LPC
analysis) for the female speech sampled at 22050 Hz, have proven to be the most effective.

6 XIV Congresso da Sociedade Brasileira de Computacio.

| Simpésio Brasileiro de Computacio e Misica 7

Once the pitch tracking is done, a Frequency X Time function like the one in Fig. 3 emerges as a result c.)f
the algorithm. At this point it is very important to be able to adjust this curve for resynthesis. This a.dJustment is
mostly necessary due to imperfections in the result emerging from the pitch traclfing alg.onthm. T?]ese
imperfections come in the form of glitches that can be easily detected by a small deglitching routine or avoided
for different sections of the Frequency X Time curve by a redefinition of the frame and hop sizes in the pitch

tracking input.
300
00
0.5 10 16 20 25 0 a6 40 45

Time 1 sec.

Frequency in Hz
I
8

Fig. 3 - Frequency function obtained from the pitch tracking algorithm.

The worst artifacts introduced in the resynthesis by these imperfections occur in the boundaries between
voiced and unvoiced frames. In case the pitch tracker fails to produce a good estimate of the pitch for a voiced
frame, which is very conceivable due to the proximity to a noisy section of the speech, the resynthesis will yield
a false frequency for the pulsed excitation in that frame, producing a very annoying effect. The best option in
cases like this is to just eliminate these points and interpolate between the remaining ones. A smother curve like
the one displayed in Fig. 4 should be sufficient to produce a more faithful result.

Fraquercy in H
g 8 8 &
3

05 i) 16 20 25) a6 40 45
Time b sec.

Fig. 4 - Adjusted version of frequency function used to improve resynthesis

Apparently, any compositional elaboration to be introduced in the frequency dimension of a speech phrase
with LPC, should probably be based on this adjusted version of the curve rather than in the inaccurate version
coming out of the pitch tracker.

SOUND EXAMPLES
With the purpose of demonstrating the ideas discussed in this paper, an example phrase of female speech
was analyzed and resynthesized in several different conditions. An-audio tape containing these sound examples

can be ordered from the author.

1. Original speech phrase used: "I burst out in scorn, at the reprehensible poverty of our sex".
Female voice sampled at 22050 Hz. Duration of 4.79 sec.

2. Residual produced by the LPC analysis of sound example 1. Autocorrelation method using the

standard LPC model was employed. Number of poles was 32, block size 600 and hop size 200.
Amplitude has been boosted up for demonstration purposes only.

3. Resynthesis of the phrase using the residual as excitation.

4. Resynthesis of the phrase using a pulse-noise combination as excitation. No adjustments were
made in the frequency function obtained from pitch tracking (Fig. 3).

5. Resynthesis of the phrase using a pulse-noise combination as excitation, Adjustments were
made in the frequency function according to what is displayed in Fig, 4.

6. Improved resynthesis of the original according to our refined model proposed. The LPC analysis
program was modified so that it also extracts the LPC coefficients from the residual sound.
Number of poles for the analysis of the original was 32, number of poles for the analysis of the
residual was also 32, block size 600 and hop size 200. Resynthesis is further improved by
including the adjustments made in the frequency function obtained from pitch tracking,

7. Excitation function used to produce sound example 5.

8. Excitation function used to produce sound example 6.

9. Resynthesis via covariance analysis method using CMix’s LPC programs. Parameters were set
according to Lansky’s advice: number of poles of 24, block size of 200, hop size of 100.
Adjusted version of frequency function was employed.

10. Time stretched version of sound example 9 (3 to 1 stretch).

11. Time stretched version of sound example 6 (3 to 1 stretch).

REFERENCES

Cann, R. (1985). "An Analysis/Synthesis Tutorial." In Foundations of Computer Music, ed. Curtis Roads and
John Strawn. Cambridge, Mass.: MIT Press, 114-44,

Lansky, P. (1989). "Compositional Applications of Linear Predictive Coding." In Current Directions in
Computer Music Research, ed. Max V. Mathews and JohnPierce. Cambridge, Mass.: MIT Press, 5-8.

Schaffer, R. & Rabiner, L. R. (1975). "Digital Representations of Speech Signals." Proceedings of the IEEE,
63(4), 662-71.

ACKNOWLEDGMENTS

My acknowledgements go to Professor Perry R. Cook for his challenge and support during the Voice Class
course in the Spring of *93 at CCRMA, Stanford. I'd also like to thank Mr. Paul Lansky for confirming that I
should write this paper, and composer Marco Trevisani for providing the speech samples used during this
research. The paper was written while under a Master of Arts fellowship from the Brazilian Agency CAPES, to
which I am most indebted.

| Simpésio Brasileiro de Computacio e Milsica 9

Sintese Aditiva de Tons Musicais através da Transformada Karhunen-Lo&ve

JoAo FERNANDO MaRraAR!
EDSON DOS SANT0OS MOREIRA?

UNESP-Universidade Estadual Paulista
Faculdade de Ciéncias - Departamento de Computagio
Bauru - S0 Paulo - Brasil
jIm@di.ufpe.br

2USP-Universidade de Sio Paulo
ICMSC-Instituto de Ciéncias Matemaéticas de Sio Carlos
Departamento de Computagao
S&o Carlos - Sao Paulo - Brasil
edsmorei®icmsc.sc.usp.br

Abstract:

Signals can be sampled, stored and played back by digital computers. Furthermore, signals can
be analized in such a way that compressed forms of their representation can be extracted, reducing
the amount of memory needed to store them. The Fourier transform have been traditionally used
in this way. This paper deals with the use of the Karhunen-Lodve transform as an alternative
method of representing a particular and dynamic signal, the musical tones, allowing bigger savings
of computing resources, as compared to the Fourier transform.

1 Introducgdo

Nos 1iltimos anos temos acompanhado uma rapida
evolugdio na tecnologia de comstrugdo de computa-
dores. Como consequéncia, deste desenvolvimento,
associado & competitividade, o custo de produgio e
comercializagdo dos equipamentos vem barateando
dia apés dia, forgando a industria, periédicamente,
a substituir seus equipamentos disponiveis no mer-
cado, anexando melhorias ou simplesmente desenvol-
vendo novos projetos que atraiam usudrios {consumi-
dores). Neste contexto inserem-se os sintetizadores,
08 quais aparecem como parte da evolugio do mo-
vimento musical, que passa a buscar novos recursos,
para produzir formas diferentes de sons, das que j4
sdo geradas pelos instrumentos musicais tradicionais.

Instrumentos musicais sdo fontes geradoras de
estimulos sonoros, equivalentemente, geradoras de si-
nais. Através da amostragem de um sinal sonoro,
obtém-se sua representagdo discreta no dominio do
tempo. A andlise destes sinais discretos, tem por
objetivo extrair caracteristicas para posterior repro-
dugdo. Uma transformacio para o dominio da fre-
quéncia, auxilia a analise do sinal.

A transformagcio de sinais entre os dominios do
tempo e frequéncia, geralmente, ndo se configura co-
mo um problema de grandes propor¢des e varias fer-
ramentas estdo disponiveis. Para isto utilizamos a

transformada de Fourier, transformada de Laplace,
transformada Z, entre outras [WIN 78,DeF 88,PRO
88]. Entretanto, para uma determinada classe de
sinais, algumas particularidades existem, o que di-
ficulta a reconstrugdo precisa do sinal através das
informagBes espectrais. Tal é o caso de sinais que
apresentam um quadro de componentes que variam
com o tempo de duragdo do sinal. Estas variagbes
podem envolver as componentes de frequéncia, suas
amplitudes e fases. A reconstrugio do sinal a partir
das suas caracteristicas espectrais exige o emprego
de um tratamento dindmico, resultando em grande
demanda de poténcia aritmética do processador efou
na quantidade de memdria requerida. E o que se ve~
rifica na sintese de tons musicais [MOO 77].

A reprodugdio fiel de um instrumento musical
implica em se levar em consideragio todas as va-
ria¢bes em amplitude, quantidade e fase dos harmé-
nicos que ocorrem durante o tempo de dura¢io de
um tom. Neste sentido, varias técnicas existem e
hoje sdo utilizadas, dentre as quais, destacam-se a
distorgéio de fase (Casio), frequéncia modulada (Ya-
maha), métodos aditivos, subtrativos e métodos sam-
pling [MAS 87).

O esforgo computacional exigido por métodos
de sintese de tons musicais, podem torna-los proi-
bitivos para execugdo em tempo real, utilizando-se

10 XIV Congresso da Sociedade Brasileira de Computacio

computadores convencionais. Trabalhos tém sido de-
senvolvidos na tentativa de simplificar a geragao de
tons musicais, através da utilizagio de funcdes nio
senoidais [HUT 75,STA 88]. Estes métodos exigem
uma cuidadosa andlise, para que se evite a degra-
dagdo na qualidade do som produzido, bem como pa-
ra manter a simplicidade para o controle das fung¢des
parametros, amplitude e frequéncia, para construgio
de novos tons [MOO 77].

Este artigo aborda a sintese aditiva, bem como
salienta alguns conceitos basicos, fundamentais para
a aplicagdo de computadores em sintese de tons mu-
sicais e, finalmente, descreve um método de sintese
aditiva, utilizando um conjunto de fungBes basicas
néo senoidais. Neste artigo, utilizaremos as func¢des
bésicas provenientes da transformada Karhunen-Lo-
&ve (K-L). O método K-L, também conhecido por
andlise das principais componentes do sinal [CHE 91]
é baseado na criagdo da matriz de covariancia dos da-
dos de entrada (sinais). Os auto-vetores, principais
componentes, sao extraidos desta matriz e ordenados
de acordo com a magnitude dos auto-valores. O pri-
meiro auto-vetor estd associado com o maior auto-
valor, e assim sucessivamente. Resultados praticos
demonstram os ganhos computacionais através de
comparagio com outros métodos [CAM 71,STA 88],
possibilitando sua aplicagdo em tempo real.

2 Caracteristicas Fisicas do Som

O movimento vibratério de uma massa em contato
com o ar produz som. Isto corresponde a variagdes
na densidade e na pressio do ar ao redor da massa.

Em termos de tons musicais, os movimentos vi-
bratérios podem ser causados por instrumentos actis-
ticos ou por meio de ondas eletricamente excitadas
através de um alto falante. Todo som possui trés
propriedades caracteristicas:

¢ Volume:

E descrito pela amplitude do som. Um fato bas-
tante interessante, analisando tons musicais, é que
a amplitude, bem como os outros dois pardmetros,
varia com o tempo. A maneira pela qual a ampli-
tude varia é descrita pelo envelope do tom musical.
Usualmente, o envelope pode ser dividido em trés
fases distintas : ataque, sustentagio e decaimento.

Na figura 1, a direita, podemos observar que
nem todos os instrumentos musicais possuem estas
trés fases. Por exemplo, os instrumentos de per-
cussdo geram tons totalmente ndo periddicos, de mo-
do a ndo possibilitarem uma estimativa de sua fre-
quéncia fundamental; a esquerda, ilustra o compor-
tamento de um tom de clarinete que apresenta niti-
damente seu envelope.

1
s
1t -

Figura 1: Caracteristicas de um bumbo de bateria
(direita) e caracteristicas de uma clarinete (esquer-
da), a figura (a) representa a amostragem do sinal
inteiro, (b) representa um pequeno segmento do sinal
ampliado no eixo do tempo, (c) representa o espectro
do sinal [MOO 77].

o Altura Tonal:

E descrita pela frequéncia fundamental. Na rea-
lidade, o som é formado por uma mistura de fre-
quéncias, sendo que a menor delas é chamada de fun-
damental ¢ uma combina¢io de outras frequéncias
maiores chamadas de harménicos, sobretons ou par-
ciais.

e Timbre:

E descrito como a qualidade distintiva de sons de
mesma altura e intensidade, e que resulta da quan-

tidade maior ou menor dos harménicos coexistentes .

com a frequéncia fundamental.

3 Sintese Aditiva de Tons Musicais

A principal caracteristica de sintese aditiva, em tons
musicais, é a representacio do sinal através de um
conjunto de fun¢Ges ortogonais. Esta técnica quando
baseada na representagdo truncada de Fourier, é um
dos métodos mais conhecidos em geragio de tons, de-
vido & sua fidelidade. Entretanto, esta representagao
néo ¢ utilizada em aplicagdes de tempo real, devi-
do & grande demanda de poténcia aritmética exigida
do processador. Este método tem sua performance
ainda mais degradada, principalmente se for espera-
do que um mesmo sintetizador gere tons de diversos
instrumentos. Bm geral, um tom musical, z(e), é

I Simpésio Brasileiro de Computacio e Misica 11

aproximado pela equacao 1:

K
2(n) =) | Ai(n)@i(6i(n))]

i=1
onde {4;} representa o conjunto de fungdes periédicas
e ortogonais (fungées bdsicas), A;(e) representa a
fung¢lo amplitude (envelope) e 0;(e) representa a fun-
¢lo fase. A fungBo frequéncia ,F(s);, é determinada
através da derivada de 6;(e) no tempo.

O processo de anélise, extraird os pardmetros
necessérios para o cdlculo da equagdio 1,que repre-
senta a sintese. A figura 2 ilustra a extragio dos
pardmetros e a composigao destes para representago
de um tom musical.

LA RYOT Movand
xtrator harryonica 1
h_ (A 3
B

" oxtros harmericer

LA&L___ Ago—] futa
atsmbresico n bt

Figura 2: Extragio de pardmetros e reconstrugio de
um tom musical através da sintese aditiva.

l

A anélise ndo caracteriza um problema de pro-
cessamento em temnpo real, mas a sintese é caracteri-
zada como tal. Em [WAW 89], aborda-se meios para
contornar alguns problemas encontrados em sintese
de tons musicais em tempo real, sendo que o maior
deles reside na grande quantidade de dados envol-
vidos. Por exemplo, suponhamos que nossa amos-
tragem do sinal seja feita a uma taxa de aquisicao
de 40 Khz. Neste caso, necessitamos armazenar 40
mil valores por segundo. Pela equagio 1, podemos
ter uma idéia do ”tamanho” das fun¢Ges amplitude
e frequéncia que sio de mesma ordem de z(e), que é
a amostra do tom completo. Note que, estas funcdes
830 necessarias para cada harménico extraido.

O esforgo computacional baseado em aplicagbes
que utilizam este método de sintese provem de duas
origens : na geragdo das fungdes amplitude ¢ fre-
quéncia para cada harménico e na multiplicagio das
fungbes amplitude com as fungies bdsicas

Teoricamente, qualquer conjunto de fungdes pe-
riédicas que satisfaga as condicdes de ortogonalidade
[AHM 75], pode ser utilizado para geragio de tons

musicais, baseado em sintese aditiva. A escolha deste
conjunto estd intimamente ligada aos objetivos pro-
postos pela sintese. Desejamos sintetizar tons musi-
cais em tempo real. Para isso, a redugdo do nimero
de fungdes basicas serd uma, condi¢io necessaria e i-
nevitdvel. A figura 3 ilustra um diagrama minimo
para a sintese aditiva. Embora seja bastante natural

guctiador,
1

3
oscHadar
2

1

oschiador
n

B o

alto falanty

~aengun

(RO

Figura 3: Representagio em blocos para um sinteti-
zador baseado em sintese aditiva

a escolha de fungdes basicas senoidais, deve-se levar
em conta a demanda computacional exigida por es-
te conjunto. Dependendo do tom a ser gerado, serfio
necessdrias mais de 30 sendides para minimizar as dj-
ferengas perceptiveis entre o tom sintetizado e o na-
tural [GRE 77]. Vérias pesquisas utilizando funcdes
basicas nio senoidais tem sido realizadas. As fungdes
Walsh [AHM 75] tém apresentado muitas vantagens
em relagdo as fungdes senoidais, devido & facilida~
de de geragdo destas fungdes basicas em computado-
res digitais. Infelizmente, sio necessérias mais de 16
fungbes Walsh para minimizar as diferengas percep-
tuais [HUT 75].

Na se¢fio seguinte, apresentaremos a transfor-
mada Karhunen-Loeve com o objetivo de reduzir o
ndmero fungdes basicas necessarias.

4 Representagao de Sinais Utilizando Trans-
formadas Karhunen-Lo&ve

Uma importante aplicagio de transformadas ortogo-
nais, em processamento de sinais digitais, é a com-
pressdo de dados [AND 70, AHM 75, WOM 77, S-
TA 88, CHE 91], isto ¢, a representa¢do de um sinal
de maneira mais eficiente. As transformadas ortogo-
nais podem ser divididas em duas classes, segundo
as fungbes bésicas utilizadas. Desta forma, temos
a classe baseada em fungdes ndo senoidais e a de
fungdes senoidais, tendo esta ltima como tnjca e
presentante a transformada de Fourier.

Faremos agora, uma breve introdugao a expansio

12 X1V Congresso da Sociedade Brasileira de Computacio

K-L. Seja {X} um conjunto de vetores, obtidos por
amostragem, de uma classe de sinais aleatérios; po-
dendo ser tons musicais. Um representante de {X}
¢é dado por z; = (2j1,%;,2, ..., %j,k). A amostra z;
pode ser aproximada por 2:

N
z; = yj,101+y5 202+ FY NON = Zyj)i‘lsi N <K

i=1
(2)
Yi,i :m}qﬁ,— = 1,2,“.,]\/ (3)

onde K é o nimero total de componentes da amos-
tra e N é o nlimero de componentes utilizadas na
aproximagao.

Por defini¢ao, o minimo erro quadrado, ¢, é dado
pela expressao 4:

K N K
e= Oyt~ Y wad)?= Y. $iRxds (4)
i=1 i=1

i=N+1

onde Rx é a matriz de covaridncia do conjunto {X}.
Dada por R, = & Z;’zl(xj —X)(=; - X)t, onde V
representa o nimero total de elementos do conjunto
{X} e X é o vetor médio do referido conjunto. Quan-
do {¢;} constituem a base ortogonal de Karhunen-
Loéve, os elementos ¢; sdo determinados a partir dos
autovetores de Ry, de acordo com a equagdo 5:

Rxdi = A (3)

O erro de truncamento da equagéo 4 é dado a-
través da equagio 6

K
Min(e)= Y X (6)

i=N+1

Isto significa que, se utilizarmos apenas N auto-
vetores para a representagdo de fungdes, o erro de
truncamento serd minimo, sendo dado pela equagdo
6. A equagdo 2, escrita em termos dos auto-vetores
da matriz de covaridncia, é denominada expansio
Karhunen- Loéve. A correspondente transformagio
ortogonal inversa, na equagio 3, é chamada transfor-
mada Karhunen-Loéve (K-L).

5 Aplicacdo de Transformada Karhunen-Lo-
&ve em Tons Musicais

Pela, maneira que expomos a transformada K-L, po-
de nos sugerir uma aplicaggo direta do tom musical
completo, conforme ilustra a figura 1. Porém, se ob-
servarmos atentamente a equagfo 5, notaremos que
a dimensdo da matriz de covaridncia esta associada a
duragdo do tom musical e este, por sua vez, & taxa de

amostragem, a qual o tom foi submetido. Em geral,
tons musicais sdo amostrados a4 40 KHz. Portan-
to, uma aplicagdo direta da transformada K-L seria
impossivel, devido & dimensdo da matriz de cova-
ridncia. Contudo, esta preocupagio estd descartada,
pois, por defini¢do, a sintese aditiva requer apenas
que o conjunto de fungBes bésicas seja periodico, e
nao de mesmo comprimento do tom original.

Neste instante, faremos algumas adaptagbes &
transformada K- L para tons musicais, mais especi-
ficamente na computagio da matriz de covariancia,
para uma grande quantidade e variedade de tons de
instrumento musicais.

Para cada tom musical amostrado, selecionamos
um conjunto de fun¢bes-amostras para o cdlculo da
matriz de covariancia, i.e., seja {z¢} um conjunto de
fungbes-amostras de z¢ (o), um membro deste conjun-
to é dado por :vg = (@1, %3, ..., Lkp), aSSumiremos que
tais conjuntos de amostras possuem o vetor médio
identicamente nulo, facilitando o cdlculo da matriz
de covariancia. Desta forma, podemos expressar a
matriz de covariancia, através da seguinte equagdo :

k
1,
Ro =5 ;1‘5% U]

Como ja sabemos, as fungdes basicas K-L sio de-
terminadas através da solugdo dos auto-vetores, pela
equagdo b.

Um resultado interessante, obtido através do mé-
todo K-L, é que o espectro de frequéncias de um
auto-vetor pode ser escrito como combinagao linear
das transformadas de Fourier das fun¢des-amostras,
o qual ¢ dado utilizando as equagSes He 7 :

Fugi) = FOO_ zeztdi)
3 N

f(’\i¢i) = Z Z zg(k)mz_(ﬁie-—jwkt
13

k

F(ridi) = Z zzq‘:,-(z ze(k)e~ivk)
¥

€
F(hdi) =Y zihiF(we) (8)
€

Baseado no resultado obtido pela equagéo 8, im-
pomos as seguintes restri¢des para a aplicagdo desta
técnica :

o 1. As fun¢Bes-amostras devem ter um periodo
fundamental, por exemplo k, amostras. Isto
determinard o periodo fundamental dos auto-
vetores.

| Simpésio Brasileiro de Computacio e Miisica 13

e 2, As fungdes-amostras devem ser periodicas e
terem banda limitada. Assim, os auto-vetores
terdo estas propriedades.

Com estas restri¢es, agruparemos as amostras
dos tons musicais em classes semelhantes, para a
computagio das fun¢bes bésicas. Apds esta compu-
tagdo, determinaremos as fun¢Ges amplitude e fre-
quéncia, pela técnica de fungGes lineares por partes.

6 Procedimentos para a utilizacao da Trans-
formada K-L em Sintese Aditiva de Tons
Musicais

Na pratica, nosso objetivo serd alcangado dividindo-
se o problema em 5 procedimentos, os detalhes sobre
os procedimentos podem ser encontrados em [MAR
92]. Abaixo, relacionamos apenas os tépicos princi-
pais :

Normalizagao das Fungdes-amostras: pro-
cedimento utilizado para o tratamento dos dados con-
forme as restri¢des (1) e (2), de maneira a garantir a
validade da equagao 8.

Alinhamento de Fase das Func¢oes-amos-
tras : Procedimento utilizado para auxiliar a con-
centragdo de energia nos primeiros auto-vetores, con-
sequentemente nas fun¢bes bésicas K-L, possiblitan-
do uma redugdo significativa deste conjunto para a
sintese [CHR 79]. Por exemplo, se cada fun¢io a-
mostra possuir um ponto de méaximo, o qual con-
tenha uma grande fra¢do de energia do sinal, es-
tas fun¢bes serdo alinhadas de maneira a que estes
méximos ocorram no mesmo tempo para todas as
fung¢Ses-amostras.

Classificagao das Fun¢des-amostras: pro-
cedimento utilizado para auxiliar a concentragio de
energia nas fung¢des basicas K-L, através de classifi-
cagio dos instrumentos musicais [STA 88].

Determinacéo das Fungdes Bésicas K-L :
procedimento utilizado para a determinagio, através
da equagdo 5, das fungdes basicas para cada uma das
classes encontradas.

Determinac¢ao das Fungoes Amplitude e
Frequéncia : procedimento utilizado para a deter-
minagao dos pardmetros variantes no tempo. Uma
maneira eficiente para a geragio das fun¢des ampli-
tude e frequéncia é dada através de fung¢des lineares
por partes (piecewise linear):[MOO 77,GRE 77,STA
88,SER 90].

A figura 4 ilustra a aplicagio deste método em
sintese de tons musicais.

7 Conclustes

Todos os sinais sonoros existentes na natureza sio
complexos, analdgicos e continuos no tempo. Através

Fungios Bisicas

Classo 1 Selotox
Clazso 2 ds
Clasee 3

Classe 4 b

L

Funcbes Awplitude
doe

Sintess
Musicals Adit [
Fungdes Frogubneia
dos T
Musteats

Figura 4: Ilustra o processo de sintese aditiva basea-
do em transformada Karhunen-Loéve para 4 classes
de instrumentos musicais. Utilizamos um seletor pa-
ra enviar apenas as fungdes bdsicas necessirias para
cada instrumento e suas respectivas funcdes ampli-
tude e frequéncia

de uma cuidadosa mostragem, podemos obter uma
sequéncia de valores discretos no tempo para a re-
presentacdo fiel destes sinais. Desta forma, os com-
putadores podem ser utilizados para processar ou re-
produzir este tipo de informagdo.

Sons de alta qualidade tem sido gerados por
técnicas de sintese aditiva. Uma das vantagens des-
ta técnica é a flexibilidade fornecida no controle das
fungGes basicas que sdo somadas para a reconstrugio
do tom. Entretanto, a carga computacional exigida
na implementagéo desta técnica, quando baseada na
representagdo truncada de Fourier, limita seu uso em
aplicagSes de tempo real, devido a grande quantidade
de fung@es basicas necessarias. Este quadro se com-
plica ainda mais, quando se deseja que um mesmo
sintetizador reproduza tons de vérios instrumentos.

Dentro deste contexto, estudamos maneiras al-
ternativas de representagio de sinais utilizando trans-
formadas ortogonais baseadas em fungdes néo se-
noidais, dentre as quais destacamos a transformada
Karhunen-Loéve. Esta transformada possibilita a re-
presentagao de sinais sonoros a partir de um niimero
reduzido de fungGes bésicas. A redugio das fungdes
basicas é conseguida através de uma anélise conjunta
de amostras de todos os instrumentos desejados.

A utilizagdo desta técnica tem mostrado sua e-
ficiéncia. Na andlise realizada por Stapleton [STA
88], foram realizadas, a classificagiio e a sintese para
varios instrumentos. A tabela 1 ilustra o resultado
da classificagdo para 12 instrumentos musicais.

14 XIV Congresso da Sociedade Brasileira de Computacéo

Classe Instrumento F. bisicas
Diapaséo 1,2
Flauta 1,2,3,4
1 Guitarra 1,2,3
Marimba 1,2,3,5
Violino 1,2,3,4
Contrabaixo 1,2,3,6
Trompete 1,2,3
2 Trompa Francesa 1,2
Trombone 1,2
Clarinete 1,2,3
3 Sax Tenor 1,2
Sax Alto 1,2

Tabela 1: Ilustra um exemplo de classificagdo de
instrumentos musicais e as respectivas fung¢Ses
basicas K-L.

Como podemos observar, a tabela 1, apresen-
ta os instrumentos divididos em classes, as funcOes
bésicas utilizadas por cada instrumento. Um exem-
plo da eficiéncia da técnica é observado quando da
sintese do clarinete figura 1: uma representagdo ra-
zoével utilizando Fourier exigiria em torno de 19 fun-
¢Bes basicas [MOO T7], enquanto que por Karhunen-
Loéve, seriam necessirias apenas 3, como visto na
tabela 1.

Este método de representagdo de sinais pode ser
utilizado com sucesso em outras aplicagdes onde as
informagdes componentes dos sinais variam rapida-
mente. Tal é o caso de tons ndo harmonicos.

Referéncias

[AHM 75] N. Ahmed, K.R. Rao, Ortogonal Transforms
for Digital Signal Processing, Springer-Verlang, New
York, 1.975.

[AND 70] H. C. Andrews, J. Kane, Kronecker Matrices,
Computer Implementation, and Generalized Spectra,
Journal of the Association for Computing Machinery,
Vol 17, Nro 2, April 1.970, p 260-268.

[CAM 71] S.J. Campanella, G.S. Robinson, 4 Compari-
son of Orthogonal Transformations for Digital Speech
Processing, IEEE Transactions on Communication Te-
chnology, Vol.Com-~19, Nro 6, December 1.971, p 1045~
1049.

[CHE 91] C.S. Chen, K.S. Huo, Karhunen-Loéve Me-
thod for Data Compression and Speech Synthesis, IEE
Proceedings-I, Vol. 138, Nro. 5, October 1.991, p 377-
380.

[CHR 79] R.A. Christen, A.D. Hirschman, Automatic
Phase Alignment for the Karhunen - Loéve Exzpan-
sion, JEEE Transactions on Biomedical Engineering,
vol.bme-26,Nro 2, February 1.979, p 94-99.

[DeF 88] D.J. DeFatta, J.G. Lucas, W.S. Hodgkiss, Di-
gital Signal Processing: A System Design Approach,
John Wiley & Sons, New York, 1.988

[GRE 77] J.M. GREY, J.A. Moorer, Perceptual evalua-
tions of Synthesized Musical Instrument Tones, J. A-
coust. Soc. Am., Vol. 62, Nro 2, August 1.977, p 454

462.

[HUT 75] B.A. Hutchins, Applications of a real-time Ha-
damard Transform Network to sound synthesis, Jour-
nal of Audio Engineering Society,Vol 23, Nro 7, Sep-
tember 1975, p 558-562.

[MAR 92] J. F. Marar Utilizagdo da Transformada
Karhunen-Loéve em Sintese de Tons Musicais, Dis-
sertacio de Mestrado -USP-Séo Carlos, 1.992.

[MAS 87] H. Massey, A. Noyes, D. Shklair, 4 Synthe-
sist’s Guide to Acoustic Instuments, Amsco Publica-

tions, New York, 1.987.

[MOO 77] J.A. Moorer, Signal Processing Aspects of
Computer Music : A Survey, Proceedings of IEEE,
Vol 65,Nro 8, August 1.977, p 1108-1137.

[PRO 88] J.G. Proakis, D.G. Manolakis, Introduction to
Digital Signal Processing, Macmillan Publishing Com-
pany, New York, 1.988.

[SER 90] M.H. Serra, D. Rubine, R. Dannenberg, 4ng-
lysis and Synthesis of Tones by Spectral Interpolation,
J. Audio Eng. Soc., Vol. 38, Nro. 3, March 1.990, p
111-128.

[STA 88] J.C. Stapleton, S.C. Bass, Synthesis of Musi-
cal Tones Based on the Karhunen-Loéve Transform,
IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol. 36, Nro. 3, March 1.988, p 305-319.

[WAW 89] J. Wawrzynek, VLSI.Models for Sound Syn-
thesis, Current Directions in Computer Music Resear-
¢h, The MIT Press, Massachusetts, 1.989, p 113-148

[WIN 78] S. Winograd, On Computing the Discrete Fou-
rier Transform, Math. Comp. 32, 1.978.

[WOM 77] M.E. Womble, 1.5. Halliday, S.K. Mitter,
M.C. Lancaster, J.H. Triebwasser, Data Compression
for Storing and Transmitting, Proceedings of the IEE-
E, Vol 65, Nro 5, May 1.977, p 702-706.

Agradecimentos

Ao Departamento de Computagio da UNESP-
Bauru, pelo afastamento concedido para a realizagdo
do programa de doutoramento no DI/UFPE,

A Capes-PICD e CNPq pelo apoio financeiro.

Ao Departamento de Informética da UFPE pela
utilizagdio dos recursos computacionais.

Ao Dr. Edson Costa de Barros Carvaltho Filho
(D.I./UFPE) pelo grande incentivo para realizagio
deste artigo.

I Simpésio Brasileiro de Computacio e Misica

15

The Synthesis of Complex Sonic Events
by Functional Iterations

Agostino Di Scipio & Ignazio Prignano

o i Labor_atorio Musica & Sonologia
Dipartimento di Matemaglca Pura ed Applicata, Univ. di L'Aquila (ltaly)
c-mail Ims@vxscaq.aquila.infn.it

Abstract

This paper intreduces a non-standard sound synthesis method that the i
) t authors,
t‘ermxpolog‘y drawy from the literatare on chaos theory, call synthesis by functi::;};
iterations. It'|<%escnbes the general formalism and the application of a difference equation
modgl ~ the “sin mz:p". .Sounds generated with this method can show dynamical properties
ranging from very acu_ve" behavior (spectrally rich transient phenomena, turbulence and
noise) to relatively "inactive" behavior (smooth, if not almost ﬂz;t curves), d
unpredictable transitions in between. >

Motivations

In computer music research, sound synthesis is a maj i i
1 C) jor topic. In short, one can easily r i
distinct approaches to the design and impl i is 1 we refor to themn
plementation of sound synth N

as the "standard” and the "non-standard” approach. Fyfhesis methods here, we refer to them
Most rt_esearch work is usually unqertakcn in the first kind of approach. It entails the study of one or

more acoustic models of some theoretical coherence and the implementation of algorithms capable of

reproducing them on the oomputex.n In genelta.!, this is the case with most well-known synthesis methods,

research (De Poli et al., 1991).
Less has been done in the non-standard a
N 5 pproach, although many composers have devel
utlhze.d a variety of methods (e.g. G.M.Koenig, I.Xenakis, and H.Brin). In this perspective, th(:g:disaﬁg
fﬁe—exnsung‘ acoustic model, while the synthesis process is of the composer's own invention aiming at
e &I;pest mtegmtlxon b;teween sound synthesis and the compositional process. '
appropriately understood, non-standard methods Tepresent an approach of mi i
. s . W t
modelling of sound, a perspective of sonic design also proper to instanppoes of asynccl:xnoucs ug;n%ﬁ

S)"nthesm/.processing and othc;r tccl_nmques based on microstructural representation of sound in the

structure (Truax, 1990a), between the composer's model j j i
scale musical design (Di Seipio, 19.93). PO! models of sonic materials and hisfher models of large

A firesh perspective of non-standard synthesis

epiphenomenon of a dynamical process captured in a model of musi i i
¢ : i sical design (i.c.: at some macro-
Ctt:unllgé)ral scale), in computer music the properties of the sonic structure - whose local Gestalt is usually
: timbre - should themse}ves be understood as epiphenomena of micro-temporal compositional
processes, unrelated to acoustic models but capable of modelling a phenomenon of morphological

16 X1V Congresso da Sociedade Brasileira de Computacao

emergence (Di Scipio, 1994). The problem raises about what may ever be the relevant features in such
kind of models.

A possible answer comes from the mathematical modelling of complex systems. In chaos theory, it
is shown that simple iterated difference equation systems can capture the details of rich, dynamical
phenomena showing peculiar qualitative emergent properties of macrostructure (May, 1977; Collet &
Eckmann, 1980). In the following we describe what can be called synthesis by functional iteration -
drawing from terminology introduced by Mitchell Feigenbaum in an early article on nonlinear systems
(1980). The effort consists in exploiting the notion of iferation as a source of self-organization in the
dynamical behavior of sound.

Theoretical basis of sound synthesis by functional iterations

The formal frame of our mathematical model can be described as follows: we shall call

ACR the set of "initial values" for our iterations;

G C ®@m the set of parameters of the particular map(s) considered;

BCHh the set of samples of the sound signal finally generated,
and consider the following cartesian product:

AXGCRxR
Let F be a map defined as

F. AXG - B

x{ah - Fixia) (faj} = aj.ay,...2,)

which can be considered as a parameter-dependent function which maps from A to B with g; as varying
parameters. By fixing a set of m real parameters (a point of G) we have:

f: A - B
x = f(x)

f(x) = F(x; ay...a).
By considering g; a sequence of points from G, we get a sequence of maps /. Then, if
BCA

we can construct the iteration of the function f - thereby introducing the operation called functional
iteration - by repeatedly applying f'to itself » times:

Bx) = ())) = Eofo - of(x)

Given a sequence of initial values x,; € A and a sequence of parameter sets g; € G and correspoding
functions f;, a discrete time series can be computed where the i-th sample is the i-th n-iterate of x, ; :

, Soit = Pa0oi) = Gy o Gl) o)
time ¢ Xai = (xo,i) =5 & (.. & X) D
Xgir =G0 = G Guoup) -0

In order to create time series with complex behavior, we must choose a nonlinear £ In the following
section, we introduce and study the main properties of one such function. However, it is clear that the
relevant point here is the process of functional iteration, more than the function we work with: "Yer,
precisely because the same operation is reapplied {...} self-consistent patterns might emerge where the
consistency is determined by the key notion of iteration and not by the particular function performing
the iterates” (Feigenbaum, 1980).

| Simpésio Brasileiro de Computacio e Mdsica

17

The "sin map" model

We have chosen to study the application of the "monoparametric” map (m = 1) defined by

F:[-#/2,%72} X [04] —(11)

(x, 1) - sin(rx)

whose explicit iterated form is written as

Xy i = sin(; K1)
We set A = [-%/2,7/2] because of the fact that, given the periodicity of the sin function, a larger space
would only return trajectories already achievable starting from within [-#/2,#%/2], with the exception of
xg, of course. This is becasue the Ist iterate would anyway fall in the interval [-1,1], completely covered
by sin(rx) for x; in [-#/2,%/2] and » => 1. Moreover, we set G = {0,4] because any larger value in »

would only provide dynamical behaviors already achievable with » just below 4. Following are four
examples showing the graphs of sin(rx) with increasing values of 7.

L

The behavior of the iterated process can be observed by calcdlating the n-iterate of some x, for linearly
increasing ». In the leftmost figure, the 5th, 6th and 7th iterates are shown as » moves from 2 to 4; in the
righmost, the 8th, 9th and 10th iterates are plotted. In all cases we set x,=0.1.

SRy

2 22 4 26 2 3 32) 4 27 a2 28 28 28 3 Y] a6 as 4
—

Observe that the higher is the iterate and the more dynamical is the evolution of the signal traced by
successive n-iterates. To our knowledge, the oscillating trajectories traced by such sequences of n-iterates
have not been explicitly addressed by any scientifical study. This means that our applications is in need
of further theoretical insight into mathematical details which may be unknown as yet. (This is the topic
of a forthcoming study).

When we consider a larger number of iterations, the initial datum x,, is forgotten as the process
goes on (one cannot say, by any analytical means, where in the interval [-#/2,7/2] the process started
from). Moreover, transient phases to any attractor disappear; indeed, the calculation actually traces the

18 XIV Congresso da Sociedade Brasileira de Computacio

bifurcation diagram which characterizes the dynamical behavior of the model. Followin is a pl
! 2 . t of
100th iterate of x=0.1 for » going from 2 to 4. Blsaplotofthe

A simple implementation

As typical to non-standard methods, the process of synthesis by functional iterations is only conceivable
and explorable by implementing a specific algorithmic structure on the computer. The basic procedure is
relatively simple and straightforward. However, notice that, since # is not defined before the synthesis
starts (it's up to the user the decision of what iteratc is to generate the sound signal) we have a loop of
variable length within the computation of each single sample; therefore, for real-time applications we
must be able to adjust the computation in order to mantain a stable sampling rate.

- An other point worth of being mentioned is that for » in the interval [0,7] the signal is only
positive. We suggest that a conditional control be adopted in order to activate a normalization of the
mgnal in the range [-1,1] as far as » < 7 and to switch to no normalization when r > 7. (In most cases
this does not produce any noticeable discontinuity, given that » = is itself a somewhat chaotic area in
the bifurcation diagram).

) The following is a very simple C program implementing functional iteration synthesis with
time-varying r and constant x,. (The normalization problem is not taken into account, here).

#include <math.h>
#include <stdio.h>
int cot=32767; /* max amp */
int dur=22050; /* number of output samples */
double nlos{double x, double r, int n); /*prototype*/
void audio(void);
void main{()
{
int k, outsam, n, i time=0;
double icr, rm_start‘,' r_end, x0, r;
printf("input start r, end r, start X, considered iterate: \n");
§canf("%lf 3Lf 31f 3d ",&r_start,sr_end,&xC,&n);
ler={r_end-r_start)/dur; -
for{r=r_start;r < r_end; r += icr) {
i_time++;
outsam=nlos(x0, r, n)*cot};
printf("sample 3%d time %d current r %f \n", outsam, i time, r};
audio (); /* send to audio output(file) */ -
}/* end for */
}1/% end main */

double nlos{double x, double r, int n} {
int k; i
for{k=0; k<n; k++) {
x=sin(r*x});
} /% end for */
return(x};

void audioc{void)
{
, /* audio output code */
Small modifications in this short piece of code would make it work as an opcode of CSOUND. Actually,

the algorithm can be itself rendered with existing CSOUND opeodes, but of course this would make the
synthesis slower.

| Simpdésio Brasileiro de Computacio e Miisica

19

Exploring the phase space of the "sin map" model

As observable in the bifurcation diagram, moving r in its space [0,4] determines the kind of global
evolution of the generated signal, ranging from very smooth curves (e.g. » = 2) to a more acrive and
complex behavior (e.g. » = 4), passing through many transitory phases corresponding to periodical
cycles. A most important aspect of signals thus synthesized is an high dependency on the particular
region of the phase space [-#/2,7/2] X [0,4] being visited. As suggested above, each orbit in the space
corresponds to a signal of particular properties. In the synthesis process, we can

@ change » while keeping xq constant; this is what the C program above does, but we could also
e change x(while keeping » constant; and
e change both r and x(y according to some defined driving function,

Moreover, in all these cases we can choose an arbitrary n-iterate to generate the signal - although, in
practice, useful values of » are bound up to few possibilities (see discussion below). Simply speaking, the
three control strategies result respectively in

e rapid changes of global structural properties in the sound signal (highly dynamical spectra);
s innumerable signals of the very same properties (as captured by),
e a complex mixture of these two.

Notice, finally, that the higher is the iterate and the more "active" the sound synthesized. Looking at the
following 3D graphs, one may grasp some idea of how the sound signal changes as we move in the
phase space. Here the n-iterates of f{r,x)=sin(rx) are plotted over a particular region in the phase space [-
#/2,7/2] X [0,4], namely in the region {3,3.5] X [.2,.4]. Each single graph relates to a different iterate,
ie. n=4,n=35n=6andn =7 (we used such small values not to complicate the graphical rendition
too much).

124
w120 353
r[3531inc.001 erk
Rt

A

20.4.2.4) 0f2.4]
{353 {353
iter tord

Typically, the morphological properties of sounds generated with functional iteration synthesis are in a
flux of continual variation through time, but include both local and global correlation; especiaily when
very "active” (» > 3, n > 8), they are perceived as textural sonic phenomena, rich of sudden transitions,
turbolence and, eventually, broad-band noise. If we use closed orbits in the phase space (by cycling or
"modulating” either r or x,) periodic signals can be obtained. Thus, the sounding resuits can range from
pseudo-random (but locally and globally correlated) sound signals to sounds of harmonic spectra.

Before ending this section, we should recall that sensitive dependency on the initial conditions
is the essential feature of chaotic systems. A measure that would enable us to characterize such feature in
our model - hence the correlation degree within a single signal and among signals - can be compuied in
terms of the Lyapunov coefficients reflecting the exponentially growing distance of trajectories that start

20 XIV Congresso da Sociedade Brasileira de Computacio

| Simpésio Brasileiro de Computacdo e Misica

with near but distinct x,. In short, such a measure would provide a means to gain control over the
predictabilty of the system behavior, thus making possible the user's meaningful choices of . Indeed, in
many cases higher iterates will certainly not result into sounds of more interesting structural properties -
though they will certainly result in a longer computation time. Sometimes a large n may even destroy in
the signal any observable relation with the signal's generating orbit in the phase space.

Some conclusions

Relavant theoretical details and the empirical use of synthesis by functional iteration must be both
investigated in more depth. This is necessary, although a most peculiar aspect of such approach to sound
synthesis lies exactly in the possibility of an explorative, nonlinear style of sonic design. Indeed, it is
dubious that further analytical knowledge would make the model of better use in a linear and completely
deterministic approach. Functional iteration synthesis provide indeterministic models of sonic material:
the composer must learn his/her strategy by interacting with a source of structured information activated
at the level of the microstructure of music, within and through the sound.

We think that the concept of iteration, being a concrete source of unpredictable but self-
organized, consistent behavior, can capture large-scale design features which are particularly useful
when one works at the microstructural level of sound. Methods of chaos theory have been already
proposed and used as models of syntactical articulation of music (Pressing, 1988) and as powerful
control structures of granular synthesis techniques (Di Scipio, 1990; Truax, 1990b). Our study proposes
the extension of this approach to the level of the sample itself, by operationalizing a model of
sonological emergence which projects the compositional process down to the micro-time scale in the
musical structure. In so doing, it also implies a blurring of the conventional distinction between sound
and structure, since with this kind of model the composer can generate entire fabrics of sound events
and extended sonic textures that can hardly be perceived and conceived as separate partial components
of the musical structure.

References

Collet, P. & Eckmann, J.P (1980) Iterated Maps on the Interval as Dynamical Systems. Boston:
Birkhauser

De Poli, G., Piccialli, A. and Roads, C. eds (1991) Representations of Musical Signals. Cambridge Ma.:
MIT Press

De Poli, G. (1981) Tecniche Numeriche di Sintesi della Musica. Quaderni del LIMB, v.1, 12-45

Di Scipio, A. (1990) Composition by Exploration of Nonlinear Dynamical Systems. Proceedings
ICMC90, SanFrancisco: ICMA, 324-327

Di Scipio, A. (1994) Micro-time Sonic Design and the Formation of Timbre. Contemporary Music
Review 10(2). In press.

Di Scipio, A. (1993) Models of Material and of Musical Design Become Inseparable. A Study in
Composition-theory. Proceedings International Conference on Cognitive Musicology, Jyaskyli:
Jyaskyldn Yliopisto, 300-316

Feigenbaum, M (1980) Universal Behavior in Nonlinear Systems. Los Alamos Science, 1, 4-27

May, R. (1977) Simple Mathematical Models with Very Complicated Dynamics. Nature, 261, 459-67

Pressing, J. (1988) Nonlinear Maps as Generators of Musical Design. Computer Music Journal, 12(2),
35-46

Truax, B. (1990a) Composing with Real-time Granular Sound. Perspectives of New Music, 28(2), 120~
134

Truax, B. (1990b) Chaotic Nonlinear Systems and Digital Synthesis. An Exploratory Study.
Proceedings ICMC90, SanFrancisco: ICMA, 100-103

21

Modular programming of instruments in cmusic

CARLOS CERANA
Laboratorio de Investigacion y Produccion Musical (LIPM)
Junin 1930- 1113 Buenos Aires - Reptblica Argentina
tel/fax: 54-1-804-0877
email: rqcerana@arcriba.edu.ar

Abstract

This paper explains a system developed at ths Laporatorlio de Invesfigaci(‘)n. y
Produccién Musical (LIPM), for modular programming gf instruments in cmusic.
The system allows users to build up their own patche§ using ready-made pieces of
code, in a self-explanatory process. Every musician trained in .hard\.vare synthesizers
programming can easily develop a complex instrument following sxml')le rules, what
turns it useful both for composition and for teaching software syn.thems. T hc? system
allows coherent connections between envelope generators, devices for pitch ar.1d
amplitude modulation, and for additive, subtractive, FM and wave.shapmg synthesis.
As it is made exclusively of cmusic operators, users can add their own modules to

follow their particular needs.

What it is

AMI (Aid of Modular Instruments) is an attempt to develop a user-friendly interface for instrument

rogramming in cmusic. . ' ‘
P gThe system allows the user to design complex instruments by adding simple modules. These modules are

easily understood by every musician trained in hardware synthesizers programming, and their names are self-

explanatory.

What it does

In its present state, the system allows coherent connections between envelope generators, devxc.:es. for' pltC};
and amplitude modulation, for additive, subtractive, FM and waveshaping synthesis, and for spatialization o

sound.

User interface

Users build up their own patches by assembling modules, that are ready_—mz}de pieces qt’ 'code. Thedsyst;em
guarantees the coherence of connections between modules. By following certain simple rules it is easy to develop
a complex instrument, because the constitutive parts are already debugged.

The resultant instrument is later invoked from the score by means of a macro.

22 XIV Congresso da Sociedade Brasileira de Computacdo

What it looks like

A patch designed with AMI is a macro, that is interpreted by the C preprocessor before compiling the
cmusic score. The modules that compose the instrument are invoked by other macros, nested in the main one.

An instrument definition in AMI should have the following parts:

1) Header: here is the #define directive, the name of the instrument and its arguments (the parameters that are
left open to be controlled from the score).

2) A module (WHEN), that sets the action time for all of them.

3) A module for defining the use of global control for the amplitude.

4) Units for controlling the different aspects of sound (frequency, intensity, spectrum), and their evolution
upon time. Some of these modules are specific for a particular synthesis system, others are common to all of
them,

5) A module for the audio output.

Let's see an example:

#define FMPAIR(beginning,duration,intensity,note)\ <-- header
WHEN(beginning,duration) <-- action time
NOGLOBALAMP\ <-- global control of amplitude
NOTREMOLO\ <-- tremolo unit
NOENVPITCH\ <-- pitch envelope
NOVIBRATO\ <-- vibrato unit
NOMODULATORI\ <-- modulation unit (FM)

ENVMODULATION3S(0,.5,1,.7,.2,.8)\
MODULATOR1(3,note,1.7,1\

<-- modulation envelope
<-- modulation unit (FM)

ENVAMPLITUDE3S(.3,1,.8,1)\ <-- amplitude envelope
CARRIER i (intensity,note, 1)\ <-- carrier (FM)
POSITION(3,5) <-- audio output

The definition of the instrument FMPAIR tells us that it is not affected by global control of the amplitude,
nor uses tremolo, vibrato or pitch envelope units. Nevertheless, all these features must be declared and its place
held by ad hoc modules (NO-modules).

Other modules show us that the instrument is an FM pair. The MODULATORI has a modulation index of
3, and a frequency relation of 1.7 with the carrier. The waveshape of both operators is a sine, set by the value 1
as their last parameters. ENVMODULATION3S and ENVAMPLITUDE3S are the envelope generators for
modulator and carrier. They both have three segments of straight-line transitions (that is the meaning of the 3S).
The first and last values for the modulation envelope are its relative levels at the beginning and at the end of
sound; amplitude envelopes begins and ends in zero (for what it is not explicitly said, and they have fewer
arguments).

POSITION is an output module that uses the cmusic SPACE unit to spatialize the sound as it were coming
from a fixed source.

The values for beginning, duration, intensity and note remain undefined, and are later controlled note by note
from the score:

FMPAIR(0,4,-16dB,C(1))
FMPAIR(4,2,-12dB,A(0))

All crusic pre and post operators can be used with the system (Moore,1990).
It's important to notice the usage of the NOMODULATORI module. It says that there is no previous
modulation unit affecting the MODULATORI (so the instrument is only an FM pair).

Another more complex example:

| Simpésio Brasileiro de Computacio e Misica 23
MORECOMPLEXFM(beginning,intensity,note,veltremolo)\ <-- header
WHEN(beginning,4)\ <-- action time
NOGLOBALAMP\ <-- global control of amplitude
NOVIBRATO\ <-- vibrato unit
NOMODULATOR I\ <-- modulation unit (FM)
ENVPITCH2C(-20Hz,4,.5,0Hz,-5,5Hz)\ <-- pitch envelope
TREMOLO(veltremolo,8)\ <-- tremolo unit

ENVMODULATION2S(.9,.5,.2,.8\ <-- modulation envelope
MODULATORI1(1.5,no0te,.73,1\ <-- modulation unit (FM)
NOTREMOLO\ <-- tremolo unit
ENVMODULATION3S(.2,.4,1,.6,.3,.6)\ <-- modulation envelope
MODULATORI1(3,note, 1.7, 1)\ <-- modulation unit (FM)

ENVAMPLITUDE3S(.3,1,.4,.30\ <-- amplitude envelope
CARRIER I (intensity,note, | \ <-- carrier (FM)
MONO <-- audio output

The instrument MORECOMPLEXFM uses cascade FM synthesis. The output of the module
MODULATORL is taken to feed it again, as the module is invoked twice. It is important to notice that in spite
of the fact that the module is the same, its parameters are different, and so are the modulation envelopes that
affect it.

Other important feature of the system is shown by the usage of pitch and amplitude modifiers.
ENVPITCH2C (pitch envelope generator of two curved segments) affects the two modulators and the carrier.
TREMOLO (a very simple unit for amplitude modulation) affects only the first modulator, because its action is
turned off by NOTREMOLO before the appearance of the second modulator and the carrier.

How it works

The central concept of AMI is the idea of small, incomplete instruments, whose outputs are blocks going
nowhere. The values passed to those blocks are taken by the following partial instruments, which have open
inputs coming from nowhere. After processing the data, the output is again "hanged in the air” and taken by the
next operator, and so on untill the last module of the instrument.

Playing a note in an instrument designed with AMI means to play a chord with all the modules that
compound it, but only the one with the audio output actually “sounds”.

The whole system relies on the coherence of naming the input-output blocks. To prevent the unwanted
appearance of remaining data in a block (that could be left by other instrument playing at the same time), I
introduced the NO-modules. Their sole mission is to clear a particular block, to be sure that its value is neutral
to the processing.

Elements of the system
The modules are macros that play a note in one of the incomplete instruments mentioned above, which

themselves are defined using cmusic syntax.
The following two examples will enlighten the subject:

Example 1
ins O carrierl ;
adn b22 p6 b3 b5 b6 ;
adn b23 b2 b4 ;

muit b21 p5 b23 b27 ;
osc bl b21 b22p7d;
end;

24 XIV Congresso da Sociedade Brasileira de Computacio

0 T

b6
NOMODULATOR1
b4
b4 TREMOLO
NOTREMOLO
b9
ENVMODULATION2S

N\

bg
ENVMODULATIONSS b6
MODULATOR1
b27 b6
b2
ENVAMPLITUDE 38

b1

CARRIER1

b1

MONO

7

b5
NOVIBRATO

__

b3
ENVPITCH2C

]

b27
NOGLOBALAMP

| Simpésio Brasileiro de Computacio e Miisica 25

#define CARRIER I (intensity,note,waveshape)\
note p2 carrierl p4 intensity note waveshape ;

The macro CARRIER1 invokes the instrument carrierl, and plays a note in it at the moment beginning
(parameter 2), lasting for duration (parameter 4). These two parameters are supposed to be set by the macro
WHEN (that's why it must appear as the first module in the definition of the patch).

Example 2

ins O nil4;
adn b4 0;
end ;

#define NOTREMOLO\
note p2 nil4 p4 ;

The nil4 instrument cleans the block 4, by feeding an additive operator with a zero. Then it is invoked by
the macro NOTREMOLO to play a note.

Structure of modules used in the MORECOMPLEXFM instrument are displayed in the figure. The
TREMOLO unit is not analyzed here because it itself is composed by modules, and its complete discussion lies
beyond the scope of the present paper.

Further developments

The system could easily be expanded to follow everyone's particular needs. As it is made exclusively of
cmusic operators, it is possible for users to add their own modules. The only need is to preserve the coherence in
naming the input-output blocks, as it was done among the existing modules.

There is also a project for developing a graphic interface for the system, that could result in a significant
improvement.

Conclusions

AMI for cmusic allows a comfortable approach to software synthesis, that makes it useful for educational
purposes, as well as for composition. The system is easy to deal with for musicians experienced in hardware
synthesizers, since its modules remind the operators of such devices.

The primary concern of the system is friendliness and clarity, rather than computational efficiency. I consider
that for anybody at the first stages of contact with computer music languages, the waste of time in debugging is
much more important that the one in compiling.

References

Cerana, Carlos (1994). AMI: Ayuda mediante Mddulos.de Instrumentos para cmusic. Buenos Aires: LIPM.
Moore, F. Richard (1990). Elements of Computer Music. Englewood Cliffs, NJ: Prentice-Hall.

2 XIV Congresso da Sociedade Brasileira de Computacio

Acknowledgments

The development of the system described in this paper was initiated as a result of a residence program
between CRCA (University of California, San Diego), CCRMA (Stanford University) and LIPM, sponsored by
the Rockefeller Foundation.

I wish to thank Tim Labor, who patiently tutored my first steps in cmusic, and F. Richard Moore, for their
clever and opportune advice and encouragement.

| Simpésio Brasileiro de Computacio e Musica

27

On the Improvement of the Real-Time Performance of
Two Fundamental Frequency Recognition Algorithms

ANDREW CHOI
Department of Computer Science
University of Hong Kong
Pokfulam Road, Hong Kong

Abstract

Many existing fundamental frequency recognition (FFR) algorithms return reli-
able results when the analysis window is sufficiently wide. In some applications,
however, the response time, i.e., the sum of the width of the analysis window and
the computation time for the FFR algorithm, must be made as short as possible.
This paper studies the effect of window width on the accuracy of two FFR algo-
rithms and describes a new algorithm with improved accuracy for narrow analysis
windows. The new algorithm uses dynamic programming to match harmonics to
peaks in the constant-@Q transform of the signal. A modification to another FFR
algorithm that enhances its performance in real time is also considered.

Introduction

A pitched musical sound is composed chiefly of harmonic components whose frequencies are integral
multiples of a fundamental frequency. The problem of fundamental frequency recognition (FFR) is
encountered in the automatic analysis of these signals, such as in pitch-to-MIDI systems that enable
acoustic instruments to be used as controllers of digital synthesizers.

FFR algorithms that operate in the frequency domain perform spectral analysis on the signal by seg-
ments and apply a pattern matching technique to the spectrum to determine each segment’s fundamental
frequency. Amuedo (1985), for example, identifies sinusoidal components in a signal by the peaks in the
power spectrum and examines how the hypothesis for each component to be the fundamental frequency
is reinforced by the other components. Pearson and Wilson (1990) consider a multiresolution approach
for the spectral analysis step. Doval and Rodet (1991a, 1991b) apply a maximum likelihood analysis to
determine the fundamental frequency also using peaks in the power spectrum. Brown (1992) computes
the cross-correlation of the constant-Q transform of a segment of the signal with a fixed comb pattern.
The calculation of the constant-Q transform and a fast algorithin for approximating it are considered in
(Brown 1991) and (Brown and Puckette 1992), respectively.

An alternative approach for designing FFR algorithms is based on computing an autocorrelation
between the waveform and a delayed version of itself and determining the fundamental frequency by
maximizing the degree of their similarity. Ney (1982) uses time-warping to account for small variations
in the signal waveform. The estimated period is the amount of shift that results in the best match of a
segment of the signal with a future segment. Lane (1990) adapts the center frequency of a bandpass filter
to match the fundamental frequency of the signal using a convergence algorithmn. Cook et al. (1993) use
a least mean square adaptive algorithm to determine the coefficients of a filter that predicts a segment
of a signal from an earlier segment. The phase of the filter is computed from these coefficients, which
is then used to estimate the period. Another technique, described in (Brown and Puckette 1993), first
determines a coarse estimate of the fundamental frequency using a frequency-domain algorithm. The
phase change of the component closest in frequency to the coarse estimate between two segments of the
signal separated by one sample is then used to estimate the fundamental frequency accurately.

Accuracy is an important measure of performance of an FFR algorithm. In applications where syn-
thesizers with continuous pitch are controlled, the resolution at which the FFR, algorithm can distinguish

28 XIV Congresso da Sociedade Brasileira de Computacio

frequencies is also an important measure. An error of a few percent in frequency is perceivable in many
musical sounds. Frequency-domain FFR algorithms have lower recognition resolution inherently since
their spectral analysis step subdivides the frequency range into bins. The disadvantage of autocorrela-
tion algorithms, however, is that a good initial estimate of the fundamental frequency is required for
them to converge. Hybrid approaches combine the strengths of both types of algorithms (Kuhn 1990;
Brown and Puckette 1993).

When these algorithms are applied to real-time pitch-to-MIDI controllers, another important per-
formance measure is the response time of the system, which is equal to the sum of the width of the
analysis window and the computation time for the FFR algorithm. Ideally this response time should be
so short that it is not perceived by the performer. Economic and engineering constraints have resulted
in commercial systems whose response times are over 50 milliseconds for notes with an average pitch,
and even longer for low-pitch notes (Cook et al. 1993). This paper studies the effect of window width
on the accuracy of the frequency-domain algorithm in (Brown 1992) and the autocorrelation algorithm
in (Cook et al. 1993) and describes techniques for improving their accuracy.

The Constant-Q Transform/cross-correlation Algorithm

The FFR algorithm introduced by Brown (1992) operates in two steps: computation of the constant-
@ transform of a segment of the signal, and cross-correlation of the constant-¢ transform with a fixed
comb pattern that has the logarithmic-scale spacing of the harmonics. The constant-@ transform of a
sequence xz[i] is defined by

Ny-1
X[fl=1/N; Y W(Ny,i)afi] e 1270,
i=0

where Q = 1/(¥/2 — 1) is the quality factor of the transform, Ny = S/(2//%f,.;,) is the number of
samples of the signal that need to be analyzed for frequency bin f, and W is the Hamming window
whose width has been adjusted by Ny, given by W(Ny,1) = o — (1 — a)cos(2mi/Ny), a = 25/46. For
real-time operation, and for smaller values of f, Ny may in fact be greater than the number of samples in
the signal being analyzed. In these cases, X|f] is computed using only the available samples. The values
d, the number of bins to subdivide each octave, S, the sampling rate, and fymin, the center frequency of
the bin with lowest frequency, are parameters of the algorithm.

The constant-Q transform extracts the frequency components of the signal z[i] in logarithmic fre-
quency spacing, where bin f corresponds to the component with center frequency 27/ ;. Since the
harmonics of a signal with fundamental frequency f; have frequencies fo, 2f0, 3fo, ..., and so on, the
spacing between harmonics in the constant-Q transform X [f] is fixed and independent of the value of
fo. Thus to correlate the harmonics, a cross-correlation (i.e., convolution) is computed between X|[f]

and the pattern
dlog, 4

dlog, 3

e e
d

e
1,0,-..,0,1,0,...,0,1,0,...,0,1,0,

The number of harmonics to use in the pattern is also a parameter of the algorithm. The center frequency
of the bin with the highest cross-correlation value is then returned by the algorithm as the estimate of
the fundamental frequency of the signal. To illustrate this algorithm, the constant-Q transform of a
30-millisecond initial segment of a C4 (261.6Hz) note sampled from an electric guitar, the comb pattern,
and the cross-correlation are shown in figure 1.

A set of experiments was conducted to study the real-time performance of this algorithm. We
implemented and tested this algorithm with the 10-, 15-, 20-, and 30-millisecond initial segments of a
set of notes sampled from an electric guitar taken from the range G2 (98.0 Hz) to C6 (1046.5 Hz). The
results are shown in table 1. The algorithm correctly recognizes the 30-millisecond initial segments of
all notes and fails to recognize most of the initial segments of notes at or below C3 which have length
20 milliseconds or below. It also fails for 10-millisecond initial segments of notes at or below C4. This

| Simpésio Brasileiro de Computacio e Miisica

29

3.0 [‘ | A Bt s e e e
251 \
“comb” pattern
2.0
15[
Lo
0.5
0.0 P T T == e e g Sl T2 0.||;;:||:»A‘W\‘?M’7’*1
50 100 200 400 800 1600 3200 6400 50 100 200 400 800 1600 3200 6400
freq. (Hz) freq. (Hz)

Constant-Q transform Crosscorrelation

Figure 1: Constant-@Q transform and cross-correlation for a 30ms segment of a C4 note.

G2 C3 G3 Cd e Cs G5 C6
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
0ms | 50.0 59.5 80.5 105.9 4000 5263 7885 10896
Isms | 101.5 53.7 1971 2631 3943 526.3 7885 1052.6
0ms | 50.0 52.2 1971 2631 3943 5263 7885 1052.6
30ms | 100.0 131.6 1971 2631 3943 5263 7885 1052.6

Table 1: Results of constant-Q transform/cross-correlation algorithm (actual frequencies (in Hz) are
shown in parentheses beneath note names; incorrect results are shown in bold type).

failure is a result of the inability of the constant-Q transform to distinguish neighboring frequencies
when the analyzed signal is short and has a low fundamental frequency. The frequency contents of a bin
spill over into neighboring bins causing the cross-correlation step to fail. Such a situation is shown in
figure 2 for a 10-millisecond initial segment of a C4 note.

A New Constant-Q Transform/Dynamic Programming Algorithm

The new algorithm is motivated by noticing that although peaks in the constant-@ transforms of
problematic cases have broader side lobes, their relative positions remain quite stable. This suggests that
higher accuracy can be achieved by replacing the cross-correlation stage by a peak detector followed by
an algorithm that matches the peaks to harmonics. In this sense, the new algorithm is a generalization
of the one in (Amuedo 1985). Since some detected peaks may be extraneous and peaks corresponding
to some harmonics may be missing, a “time-warping” algorithm is devised to match the peaks to the
harmonics in a manner that minimizes a total error measure.

Peaks are first identified in the constant- @ transform of the signal segment. To prevent excessive
extraneous peaks, ones with small amplitudes are ignored. Examples of such extraneous peaks appear
between 600Hz and 700Hz in figure 1. The algorithm identifies and uses the p peaks with the lowest
frequencies. Let these peaks have frequencies fi, fs,. .. , [y and amplitudes ay, ay, . .. , Gp, Tespectively.
Also let b be the number of harmonics considered. The values p and h are parameters of the algorithm,
chosen to be 10 and 8, respectively, in the experiments described below. Since some peaks as well as
some harmonics should be skipped, a matching of peaks to harmonics is represented by a sequence of
pgirs (i1,91), (42:72), -y (in,7n), where 1 Sh<ipg< < <P, 1<f<fo<on < Jn < h, and

L {ik, jr) = (k=1 + 1, k1 + 1), (Geer +1, 55— +2), or (k-1 +2,jk-1+1). The last condition ensures that
~only a single peak or harmonic is skipped at a time. The boundary conditions are (ing1) = (1,1), (1,2),
. or(2,1), and (insdn) = (0,), (p~ 1,4), or {(p,h —1). The problem is then one of finding, among all

bossible such sequences of pairs, a sequence of pairs that minimizes the error measure £ = ZZ_I e(ik, Jk),

where e(iy, j).) is the error of mastching the ix-th peak to the jg-th harmonic.

30 XIV Congresso da Sociedade Brasileira de Computacio

f L e e SRR 40T

T T T T T L T 0.0 T L T T T T 1
50 100 200 400 800 1600 3200 6400 50 100 200 400 800 1600 3200 6400
freq. (Hz) freq. (Hz)

Constant-Q transform Crosscorrelation

Figure 2: Constant-Q transform and cross-correlation for a 10ms segment of a C4 note.

To formulate the problem so that it can be solved by dynamic programming, let e(i,71) = 0 and
let e(ix, jx) depend only on the first & pairs of a sequence, 1.e., (i1,51), (42,J2), -, (i, Jr). After some
experimentation, we arrive at the following definition of the error function e. The matching of the
i;-th peak to the j-th harmonic, represented by the pair (i, 51), suggests fi, /4 as an estimate of the
fundamental frequency. Let fy_; be the weighted average of the estimates of the fundamental frequency
generated by the first k — 1 pairs, where the weights are the amplitudes of the corresponding peaks. The
assumption is that peaks with larger amplitudes should have a greater effect on the final estimate of
the fundamental frequency. ThL}S define fi_q = Zl";l(ail fali)/ Z;:ll a;,. The error function is then
defined as e(ik’vjk) = (flh/.?k - fk"l)z'

The recurrence formulas for implementing a dynamic programming algorithim to determine the se-
quence of pairs with minimum error are derived as follows. Let

E;; be the error of a sequence of pairs that optimally matches the first 4 harmonics to the
first j peaks,

Fi; be the fundamental frequency estimated by this sequence, and

A;,j be the accumulated sum of amplitudes of peaks used in this sequence.

Then, E; ; is computed by the equation
Bij=mind By joy+ (fi/§ = Fim15-1)®, Bioggor + (Fi/d — Ficayo1), Bioyyon + (£i)5 — Fily-2)%)
The equations

FivgarAint/(Aisgi-1 + ad) + (fi/5) @i/ (Ase 11 + a5)
Fij=q Figj1diog-1/(Aiog 1 +a) + (fifd) i/ (Aicay 1 +a;) and
Firgadion-o/(Aimrjoe + a) + (fifd) ai/(Ai 10 + a;)

A1 -1+
Aij =1 Aigj-1+ta
Aisrjoata

are used to update F; ; and A; ;, respectively. Whether the first, second, or third expressions in these two
equations are used depends on which term within the braces in the equation for E; ; has the minimum
value. Initially, let By, = E1 5 = E3; = 0 and Ei1 = FBy;=oc0fori>2andj > 2 The values of the
tables for E; ;, F; j, and A, ; can be updated in either column order or row order. References to values
outside the range of the indices are assumed to return arbitrarily large values. The final estimate of the
fundamental frequency returned by the algorithm is Fohy Fo-1,n, 01 Fy o1 depending on which of Eyp,
Ep 14, and E, 51 has the smallest value.

| Simpésio Brasileiro de Computacio e Misica

G2 Cs3 G3 C4 a4 Cs as Ce
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
10ms | 207.3 243.2° 201.2 26011 4006 527.2 7983 1052.0
15ms | 1015 1347 1993 2488 3965 527.0 7881 1052.0
20ms | 1022 1335 107.2 263.0 3951 5255 7831 1052.6
30ms | 100.0 1319 1967 263.0 393.8 5255 7885 1052.6

Table 2: Results of constant-@ transform/dynamic programming algorithm (actual frequencies in paren-
theses; incorrect results in bold type).

The new algorithm was tested on the same set of initial segments of notes, and its results are shown
in table 2. It performs better than the algorithm based on cross-correlation, and correctly recognizes the
15-, 20-, and 30-millisecond initial segments of all notes. It also correctly recognizes all 10-millisecond
initial segments of notes at or above G3.

Real-Time Considerations for the Periodic Predictor Pitch Tracker

Given an initial estimate of the fundamental period, the periodic predictor pitch tracker (PPPT) of
Cook et al. (1993) computes a set of predictor coefficients for the signal using an iterative least mean
square (LMS) algorithm and uses them to refine the estimate of the fundamental period. Let the signal
be given by the sequence xo, %1, ... and the initial estimate of the fundamental period be P. Let there
be 2M + 1 predictor coefficients ¢_ar, c-pr41, ..., cpr. The predictor predicts the i-th sample from the
2M + 1 samples centered around the (i — P)-th sample using the equation £; = Eﬁ* M CiTi-pyj. The
error of this prediction is ¢; = z; — 2;. For a given signal, an approximation of the set of predictor
coefficients that minimize the mean square error over the prediction of the N consecutive sample values
Em4P EM+P+1,- -, Earp PN can be obtained by iterating the LMS update equations

C} = Cj -+ a/(?M + l)fE——ZZEi_P+j€i,

for j = ~M,~M +1,...,M, over the N predictions i = M + P,M + P + ,...,.M + P+ N. The
parameter o is any positive number less than 1 and z2 = 1/R Zi;ol 22, R=M+N+P+ 1, is the
signal power. To perform this operation, the length of the signal must be at least R. Having obtained
the predictor coefficients, a more accurate fundamental period estimate is given by

P’ = P(1-0/2r),

where
= arctan (Zﬁ_M ¢ sin(wj)/zjl\i_M ¢ cos(wj))

and w = 2m/P.

Cook et al. (1993) suggest using the PPPT in real time by supplying samples to it continuously,
Le., in the above formulation, letting N = co. The fundamental period estimate will then converge to
an accurate value a certain time after the beginning of a note. They report the average of this latency
to be 30.1 milliseconds for notes between F5 (698.5Hz) and G6 (1568.0Hz), which are tested in their
experiments. We implemented and tested the PPPT on the same set of initial segments of notes used
in the previous experiments. However, it does not converge to accurate frequency estimates during the
duration of most segments of notes, especially for short, low-pitch ones. The algorithm is then modified
to choose the largest possible value of N for a signal segment of a given length and iterate a number
of times over that segment, allowing sufficient time for the predictor coefficients to converge. Table 3
shows the recognition results of the modified algorithm. In these experiments, M is chosen to be 2,
and the initial estimate of the fundamental period is taken to be that of a seminote higher than the
note to be recognized. This latter assumption can be satisfied if the PPPT is used as a postprocessing
step of the dynamic programming FFR algorithm described in the previous section. The algorithm is
set to iterate 50 times over a signal segment. The modified algorithm is found to correctly converge to
the fundamental frequencies for all initial segments of notes except in two cases. It cannot be used for

32 XIV Congresso da Sociedade Brasileira de Computacdo

G2 C3 a3 C4 G4 cs G5 c6
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
T0ms | - 139.1 103.9 2585 3090 5380 7875 1052.1
15ms | 99.0 1310 10951 261.2 3945 524.1 7864 1052.3
20ms | 98.9 1314 1951 261.8 - 3937 523.5 785.6 1052.3
30ms | 989 1314 1952 261.8 3937 5239 7856 1052.1

Table 3: Results of PPPT algorithm (incorrect results for 10ms C3; not enough samples to run 10ms
G2 case).

the 10-millisecond segment of G2 because the fundamental period of that note is 227.0 samples and the
number of samples in the segment is 223 (at a sampling rate of 22255Hz). The algorithm also converges
to an incorrect fundamental frequency for the 10-millisecond segment of C3. Furthermore, note that
the frequency estimates generated by this algorithm are closer to the actual frequencies than the two
frequency-domain algorithms.

Summary

This paper reports experiments that show how the accuracy of the FFR described in Brown (1992)
is affected by different window widths. It then proposes a new FFR algorithm with higher accuracy
for narrow analysis windows. It also describes a modification to the PPPT algorithm of Cook et al. for
improved operation in real time.

References

Amuedo, J. (1985). Periodicity estimation by hypothesis-directed search. In Proc. of ICASSP 85,
(Tampa, Florida, May 1985), 395-398.

Brown, J.C. (1991). Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. v. 89, no. 1,
(Jan. 1991), pp. 425-434.

Brown, J.C. (1992). Musical fundamental frequency tracking using a pattern recognition method.
J. Acoust. Soc. Am. v. 92, no. 3, (Sep. 1992}, pp. 1394-1402.

Brown, J.C. and Puckette, M.S. (1992). An efficient algorithm for the calculation of a constant Q
transform. J. Acoust. Soc. Am. v. 92, no. 5, (Nov. 1992), pp. 2698-2701.

Brown, J.C. and Puckette, M.S. (1993). A high resolution fundamental frequency determination based
on phase changes of the Fourier transform. J. Acoust. Soc. Am. v. 94, no. 2, Pt. 1, (Aug. 1993),
pp. 662-667.

Cook, P.R., Morrill, D., and Smith, J.O. (1993). A MIDI control and performance system for brass
instruments. In Proc. of ICMC, (Tokyo, Japan, 1993), 130-133.

Doval, B. and Rodet, X. (1991a). Fundamental frequency estimation using a new harmonic matching
method. In Proc. of ICMC, (Montreal, Cananda, 1991}, 555-558.

Doval, B. and Rodet, X. (1991b). Estimation of fundamental frequency of musical sound signals. In
Proc. of ICASSP '91, ('Toronto, Canada, May 1991), 3657-3660.

Kuhn, W.B. (1990). A real-time pitch recognition algorithm for music applications. Computer Music
Journal, v. 14, no. 3, (Fall 1990}, pp. 60-71.

Lane, J.E. (1990). Pitch detection using a tunable IIR filter. Computer Music Journal, v. 14, no. 3,
(Fall 1990), pp. 46-59.

Ney, H. (1982). A time warping approach to fundamental period estimation. IEEE Trans. on Systems,
Man, and Cybernetics, v. SMC-12, no. 3, (May/June 1982), pp. 383-388.

Pearson, E.R.S. and Wilson, R.G. (1990). Musical event detection from audio signals within a multires-
olution framework. In Proc. of ICMC, (Glasgow, 1990), 156-158.

} Simpésio Brasileiro de Computacio e Miisica 33

A Linguagem SOM-A para Sintese Aditiva

ALUIZIO ARCELA
Laboratdrio de Processamento Espectral
Departamento de Ciéncia da Computagdo
Universidade de Brasflia
Brasflia, DF — CEP 70910-900
e-mail: arcela@lpel .cic.unb.br

Resumo

Descrigiio formal da sintaxe, do universo semdntico, dos operadores e de alguns
aspectos de implementagfio da linguagem SOM-A. Com o interpretador desta lin-
guagem, que é voltada exclusivamente para a sintese aditiva de sinais musicais,
executam-se partituras polifonicas associadas a orquestras, para as quais se definem,
uma a uma, as componentes espectrais em todos os seus parimetros, isto €, ordem de
freqiiéncia, Angulo inicial de fase, curva de envoltdria, e grau de estereofonia.

HISTORICO

Um primeiro esbogo para a linguagem SOM-A surgiu em 1986 a partir de algumas experiéncias com o programa
Music V (Mathews et. al. 1969). Tais experiéncias giravam em torno da tentativa de se interpretarern composi¢des
algoritmicas baseadas nas drvores de tempos (Arcela 1986), as quais, na maioria das vezes por forga do modelo,
possuiam uma grande quantidade de componentes espectrais, e eram caracterizadas, do ponto de vista da escrita de
eventos e mecanismos espectrais, por nio haver nelas, a0 menos aparentemente, qualquer possibilidade ou indicio
de serem interpretadas por um processo que nfio fosse o da sintese aditiva. Além disso, registrava-se nessas
composigdes a exigéneia de uma certa projecio acistica estereofdnica, segundo a qual um subconjunto bem definido
do universo de componentes espectrais deveria soar em apenas um dos canais, enquanto as demais componentes
soariam no outro canal, exigéncia esta que trazia uma ligeira alteragdo na arquitetura do instrumento minimo
necessrio A sintese aditiva padriio, isto &, a que se registra na literatura, como em (Moorer 1977). As estruturas de
dados estdticas da implementagio FORTRAN do sistema Music V permitiam apenas a execugfio de instrumentos
possuidores de relativamente poucas componentes, E como havia a intengfio de se perfazer uma interpretagfio plena
dessas estruturas musicais em todas as suas partes, sem que houvesse qualquer truncamento no conjunto de
componentes, a idéia que restava era investir na defini¢fio de uma linguagem que pudesse aceitar um instrumento
de qualquer tamanho, ¢ que tivesse uma tnica especialidade: a sintese aditiva. E assim, com apenas 5 operadores,
ecomumasintaxe semelhante a de LISP — os instrumentos e os eventos espectrais devem ser escritos rigorosamente
na forma de expressoes simbélicas —, surgiu a linguagem SOM-A, assumindo a simplicidade como sua caracteristica
maior.

Como niio podia ser de outra forma, a primeira implementagfio ocorreu em LISP (Nogueira Filho 1988), que
era sem diivida a atitude mais correta e natural, levando-se em conta a natureza das estruturas de dados escothidas
pararepresentar 0s elementos de SOM-A. Naquela época, o que de methor havia para o sisiema operacional MSDOS
era o interpretador muLISP87 (Mulisp 1987), um ambiente satisfatGrio em muitos aspectos, mas oferecendo como
obstdculo crucial & implementagiio de programas voltados para a sintese de sinais de dudio justamente a sua
inevitdvel execugfio de operagdes aritméticas totalmente por software. As vezes, para se interpretar um trecho de
10s, dependendo da complexidade orquestral, eram gastas entre 10 ¢ 20 horas de processamento em intel286 a 10
MHz. Hé o caso de uma pega de 120” contendo instrumentos de até 76 componentes espectrais para a qual foram
necessédrios 25 dias ininterruptos de processamento! Mesmo assim, a implementagiio de SOM-A em LISP para
pequenas maquinas assumiu uma importancia capital no desenvolvimento da linguagem, pois, se nio consegue
executar pegas de conteddo espectral denso em um prazo razodvel, ela vem cumprindo o papel de uma especificagiio

34 X1V Congresso da Sociedade Brasileira de Computacio

viva desta linguagem para sintese aditiva, a partir da qual sfio levadas a cabo outras implementagdes através de

linguagens mais dgeis no tocante aoperagdes aritméticas, como a implementagio em C** para MS-Windows (Castro
1994), que apresenta um bom desempenho — a tal pega de 25 dias é af concluida em cercade 2 horas em processador
intel486 a 66MHz —, além de oferecer uma interface MS-Windows de boa funcionalidade em diversos itens, como
0 acompanhamento visual das formas de onda & medida que o sinal vai sendo produzido, 2 manipulagio de trés
formatos para arquivos de amostras (wav, voc, str), e o acionamento de placas de som (atualmente, USE e
SoundBlaster 16) ao final do processo ou em seguida a uma interrupgfio do usudrio. Estd em curso o transporte desta
versdio em C para uma méquina Sun (Meireles et. al.). Vale ainda registrar que, entre o trabalho inicial feito com
muLISP e este dltimo em Borland C, houve uma implementagfio cuidadosa em Sun Common LISP para ambiente
UNIX (Ramalho 1991), cujo resultado apresentou um desempenho bastante superior ao que se consegue com o
LISP para DOS, principalmente em termos de interface e velocidade. Havia, contudo, uma expectativa por um
rendimento bem melhor, levando-se em conta que em Common LISP as varidveis numéricas podem ser tipificadas
em ponto flutuante, o que torna as operagdes aritméticas envolvidas em SOM-A totalmente executdveis por hardware.

Em todas esses projetos foram adotadas técnicas adequadas para gerenciamento de memdria virtual para que
as orquestras possuidoras de um grande ndmero de componentes nio tivessem problemas de espago na maquina a
ponto de se ver impedida a execugfio de uma dada partitura. O emprego desta técnica segue 0 jd mencionado preceito
de implementagio SOM-A, qual seja, o de niio haver limites para a orquestra quanto ao maior nimero possivel de
unidades-H, nem quanto ao nimero de notas simultineas enderegadas a essa orquestra, a nio ser os Gltimos limites
de espago impostos pela méaquina fisica que abriga uma implementagfio da linguagem.

OS ELEMENTOS

Unidade-H é adenominagfio do mecanismo responsdvel pela geragiio de uma componente espectral no contexto
da linguagem SOM-A. Especificamente, unidade-H é o algoritmo composto por um oscilador senoidal a tabela, cuja
amplitude € controlada por um gerador de envoltéria, ¢ cuja entrada de freqiiéncia é multiplicada por um valor
denominado ordem de freqiiéncia, conforme ilustra a Figura 1. A saida de uma unidade-H poderd ser dirigida a um
canal de dudio x, ou a um canal y, dependendo do valor do pardmetro de estereofonia. Construir um instrumento
musical em SOM-A significa especificar um agrupamento de vdrias dessas unidades em configuragio de sintese
aditiva, conforme a Figura 2, de modo que todas as saidas parciais serio somadas para cada canal de dudio, e havera
uma tnica entrada de freqiiéncia e uma tnica entrada de amplitude.

Constroi-se um instrumento SOM-A a partir de um niimero qualquer de componentes, todas elas possuindo
um comportamento espectral bem definido ¢ individualizado. Para se executar uma nota nesse instrumento, sfio

d
o

-0 =

f
I

Fig. 1 A unidade-H

I Simpésio Brasileiro de Computacio e Musica 35

rlr adf

Fig.2 Um instrumento SOM-A

utilizados na partitura comandos de notas que, na sua apresentagfio mais simples, fazem mengo a toda a populagiio
de unidades-H do instrumento, porém, quando escrito de uma forma mais especifica, solicita ao instrumento que
acione seletivamente um bem definido subconjunto de unidades. Esta capacidade singular de fracionar o instrumento
em grupos menores concede a linguagem a nogdo e, por conseguinte, o mecanismo do subinstrumento, 'nogfio esta
itil em composigo musical que explora aelaboragfio sistematica oualgoritmica de timbres. A agao do subinstrumen-
to ¢ eficaz especialmente na obtengio de timbres correlatos, mas também possibilita o emprego de uma certa
“economia” de componentes espectrais no espago timbrico global de uma eventual pega,

SINTAXE

SOM-A € um interpretador de programas espectrais que possuem pelos menos duas partes: uma orquestia feita
de unidades-H, que é o primeiro bloco sintético, e uma seqiiéncia de notas. Estes programas sio denominados cartas
espectrais, e constam de arquivos de caracteres representando.uma seqiiéncia de instrugdes capazes de criar
instrumentos, atribuir valores de lapso e de taxa de amostragem, bem como executar nos instrumentos um
aglomerado de notas, sejam elas simultaneas ou niio, segundo uma ordenagfio cronoldgica e uma normalizagio de

amplituges realizadas previamente.

1. Operador VAL
E sempre o primeiro comando de uma carta, como um cabegalho, devendo ser aplicado sob a forma:
(VAL t1t2 Fa AT N L)

Sua fungio ¢ atribuir valores ao lapso de tempo t #2 em segundos, 2 taxa de amostragem F, em cps, aos 3
modificadores A TN de interpretagio de notas, ¢ ao nimero de pontos maximo L para as envoltrias. Estes
pardmetros sfo assim definidos:

A Andamento: valor que multiplica (com excegiio dos tempos 1 12 estabelecidos por VAL) todos os tem-
pos e duragdes, quais sejam, (1) a vigéncia dos instrumentos; (2) os parAmetros /q {5 do operador
EXE; (3) o instante inicial e (4) a duragfio (d) da nota.

T Transposigdo: valor que multiplica as freqiiéncias (f) das notas, sem, contudo alterar as ordens de
fregiiéncia dos instrumentos.

N Norma: valor que multiplica as amplitudes (@) das notas.

L Limite de envoltéria: valor limite para as abscissas das envoltdrias.

Exemplo: a instrugfio (VAL 0 10 12000) solicita que a carta seja interpretada de 0—10 s a uma taxa de amostragem

36 XIV Congresso da Sociedade Brasileira de Computacio

de 12000 cps. Como os modificadores nio estio explicitados, todos eles assumem o valor 1, enquanto que o limite
de envoltéria valerd 511 por default.

2. Operador INS

Define um instrumento na fntegra, através de uma expressdo da forma:

(INS <vigéncia> <nome-ins> <unidades-Hs)

para o qual:
<vigéncia> € o instante a partir do qual o instrumento <nome> deixa de existir.
<nome-ins> é uma cadeia de caracteres possuindo obrigatoriamente um literal como primeiro caractere.

<unidades-H> ¢é uma lista de sublistas ((h1 ¢1e1 A1) (a2 dae2 A2) ... (hk Ok ex Ag)) que determinam os
valores das partes funcionais de cada unidade-H do instrumento, quais sejam:

hi ordemde freqiiéncia da i-ésima unidade: ndmero real positivo.

$i dngulo de fase: valor expresso am graus.

ei envoltéria: Lista de pares de coordenadas (ordenada x abscissa) sendo a ordenada um valor real
compativel com os limites numéricos da implementagfio, ¢ a abscissa um nimero inteiro com-
preendido entre zero e L. Estes pares possibilitam a especificagfio de uma forma geométrica

através de até L + 1 amostras de uma curva que modulard em amplitude a respectiva componente
espectral e que se ajustard & duragio da nota.

Ai graude estereofonia. Valor entre O ¢ | que corresponde ao balango de saida da componente com
relag@io aos canais estereofonicos x, y. Se for 0, a saida estard totalmente em x.

3. Operador EXE

A aplicagiio deste operador na forma abaixo submete uma sequéncia de eventos espectrais <<notas>> entre dois
instantes aos respectivos instrumentos da orquestra:

(EXE ta to)
<<notas>>»

(STP)

Em que <<notas>> ¢ uma seqiiéncia de notas <notaj> <notaz> ... <notan>. Diversas se¢oes (EXE ta tp) <<notas>>
(STP) podem compor uma carta, uma vez que o interpretador SOM-A entende o operador EXE da seguinte maneira;
“execute todas as notas da seqiiéncia abaixo até que o operador (8TP) ocorra, ou o instante de execuglio s seja maior
ouigual afy”. Na situagio mais comum, 1, ¢ zero e to ¢ a duragiio da carta. Ainda que se possa utilizar um mesmo
instrumento para diferentes vozes superpostas ou niio, uma das imposi¢des do interpretador EXE ¢ que as notas
estejam ordenadas segundo o seu segundo parimetro, isto ¢, devem aparecer na carta em ordem cronolégica.

<nota> ¢ uma ordem de execugiio de um certo instrumento previamente definido na orquestra, de modo que
ela serd tocada a partir de um certo instante, porum certo tempo, a uma dada freqiiéncia, a uma dada intensidade,
sendo escrita como uma lista de 5 elementos:

<nota> = (<instrumento>
<instanie inicial>
<duragfio>
<freqiiéncia em cps>
<amplitude>)

O instrumento solicitado pela nota pode ser escrito como um 4tomo ou como uma lista, isto é:
<instrumento> = <nome-ins> | <lista definidora de um sub-instrumento>

Nocasode serum dtomo, a nota estard exigindo a agfio plena do instrumento, De ouiro modo, isto €, se o instrumento
for representado por uma lista, a nota estard clamando por um subconjunto das unidades-H de um determinado

{ Simpésio Brasileiro de Computacio e Mdsica 37

instrumento, o qual passara a ser considerado como um macro-instrumento. A selegdio de unidades-H origindria
desse macro-instrumento € o que se denomina subinstrumento, que ¢ assim definido:

<subinstrumento> = (<nome do macro-instrumento>
<(m n2 .. njp>
<vigéncia do subinstrumento>)

sendo o primeiro elemento ¢ um Atomo, representando um macro-instrumento, o segundo € uma lista de qﬁmeros
representando unidades-H selecionadas desse macro-instrumento. Cada nﬁmgro repre§emando a po_sngﬁo da
unidade-H na seqiiéncia <unidades-H>. O terceiro 6 opcional. Trata-se da vigéncia do subinstrumento criado com
a nota. Quando um subinstrumento ¢ criado para atender apenas a uma nota, nfio hé necessidade de se especificar
a vigéncia; SOM-A se encarregard de calcular este valor.

4, Operador STP

V. operador EXE.

5. Operador FIM

A aplicagiio do operador (FIM) encerra a interpretago da carta.
DUAS CARTAS

Na primeira carta abaixo, a primeira nota solicita um subinstrumento derivado de 11, de (al maneira que apenas
a sua primeira componente serd ativada (10x10=100 Hz), soando inteiramente no canal x. Embora esta primeira
nota dure apenas 0.2 s, a vigéncia do subinstrumento foi fixada em 0.8 em razio da quarta nota vir a utilizar este
mesmo subinstrumento entre os instantes 0.6 ¢ 0.8 5. A segunda nota solicita a segunda componente totalmente no
canal y. A terceira faz soar 80% da terceira componente no canal x ¢ 20% no canal y. A quarta .é semelhante 4
primeira. A quinta nota solicita um subinstrumento com duas unidades-H de 11, justamente a primeira e a segunda;
eapendltimanota solicitatodas as unidades-H de I1, 0 que corresponde a se utilizar I1 por um todo, sendo o resultado
equivalente 2 agfio da sétima ¢ idltima nota.
(VAL 016110251 1 1 925)
(INS 1.6 11
(10 0 ({0 0) {30000 385) (4000 343) (0 925)) 0)
(12 90 ((00) (7500 385) (0 925)) 1)
{15 180 ((00) (3500 385) (0 925)) 0.2))
(EXE 0 1.6)
((1 {(1)0.8) 0.00.210 1)

{1 (2)0.4) 0202101)
(11 (3) 0.402101)
(1 (1)) 0602101)
(1 (12)) 0.80.2100.6)
(1 (123) 1.00.2100.4)
{1 1.40.2 10 0.25)

(STP)

(FIM)

A carta abaixo € um extrato de s da composi¢iio algoritmica T3OLD.CAR, ilustrando (1) a ortoestereofonia estrita,
(2) a ocorréncia de valores negativos nas envoltérias, ¢ (3) valores nio infeiros — sendo alguns menores do que a
unidade — para as ordens de [reqiiéncia.

(VAL O 1.0 44100 0.0222222 1 1.25 720)

(INS 24 A21

(1 40.08 ({0 0) (-92 7) (-5134 14) (908 21) (0 720)) 0)

(0.7033 40.55 ((0 0) (2166 9) (-2875 18) (0 720)) 0)

(0.5717 39.91 ((0 0) (1845 10) (0 720)) 0)

(0.9335 41.10 ({0 0) (-3696 8) (0 720)) 0}
)

38 XIV Congresso da Sociedade Brasileira de Computacio

| Simpdsio Brasileiro de Computagdo e Misica

(INS 24 A22

{1 43.06 ((0 0) (-1771 12) (-5355 24) (-3304 36) (0 720)) 1)
(1.3289 43.79 ((0 0) (833 11) (-2751 23) (0 720)) 1)
{0.0605 136.43 ((0 0) (4322 14) (0 720)} 1)

(0.245 43.57 ((0 0) (-3707 13) (0 720)) 1}

)
(INS 6 A23

(1 44.79 (0 0) (5224 9) (0 720)) 0)
(1.4084 44 27 ((0 0) (6886 7) (0 720)) 0)
;1 5638 45.01 ((0 0) (4274 6) (0 720)) 0)
(

INS 6 A24

(1 45.36 ((0 0) (2950 12) (0 720)) 1)
(0.4581 44.55 (0 0) (-10723 13) (0 720)) 1)
2.4536 44.80 ((0 0) (2710 10) (0 720)) 1)

(
)
(INS 41 A25

(129.92 ((0 0) (-778 46) (-428 91) (20 137) (0 720)) 0)
(1.532 40.61 ((0 0) (-575 10) (-225 20) (223 31} (0 720)) 0)
§1 .9B05 55.89 ((0 0) (-738 1) (-388 2) (80 3) {0 720)) 0)

(

(

INS 41 A26

1185.47 ((0 0) (1317 93) (740 186) (264 279) (0 720)} 1)
(0.2397 139.32 ((0 0) (1202 111) (625 223) (150 334) (0 720)) 1)
(0.7683 40.93 ((0 0) (972 93) (395 185) (-80 278) (0 720)) 1)

(EXE 041)
((A24 (23)) 0 6 2166.678 0.8322)
((A23 (23)) 0 6 7127.652 0.8322)
((A22 (4)) & 6 2826.039 0.8845)
((A21 (4)) & 6 8340816 0.8845)
((A22 (3)) 12 6 2826.039 0.8845)
((A21 (3)) 12 6 8340.816 0.8845)
((A22 (2)) 18 6 2826.039 0.8845)
((A21 (2)) 18 6 8340.816 0.8845)
(A26 23 18 3982623 0.8666)
(A25 23 18 7822052 0.8666)

(STP)

(FIM)

REFERENCIAS

ARCELA, A. 1986. “Time-trees: the inner organization of intervals.” Proceedings of the International Computer
Music Conference, Haia.

CAsTRO, RRF. 1994, Implementagiio de SOM-A em Borland C** para o ambiente MS- Windows, Relatdrio
Técnico LPE-9402, Universidade de Brasilia.

MATHEWS, MLV. et. al. 1969. The technology of computer music. Cambridge, Mass.: The MIT Press,

MEIRELES, A., GIOIA, O.G. ¢ CASTRO, R.R.F. 1993. SOM-A em C para SUN SparcStation, Relaisrio Técnico
LPE-9303, Universidade de Brasilia.

MO?{(&!; 111?7 1977. “Signal processing aspects of computer music—A survey.” Pr oceedings of the IEEE 65(8):

NOGUEIRA FILHO, V. 1988, Sintese aditiva modular — uma mdquina espectral programgvel, Dissertagdo de
mestrado, Universidade de Brasilia.

RAMALHO, G.L. 1991, SOM-A em Sun Common LISP para o ambiente Open Windows. Relatdrio Técnico
LPE-9105, Universidade de Brasilia.

MULISP 1987. mulLiSP-87, LISP Lan guage Programming Environment. SoftWarehouse Inc., Honolulu, Hawaii,

39

Processador de Efeitos em Sinais Digitais de Audio

MARCIO DA COSTA PEREIRA BRANDAO
CARLOS AUGUSTO JORGE LOUREIRO
TULIO DA COSTA ZANNON
Laboratorio de Processamento Espectral
Departamento de Ciéncia da Computagdo
Universidade de Brasilia - Brasilia, DF
CEP 70910-900 BRASIL

RESUMO

Um sistema para o processamento de sinais digitais de dudio por meio de estruturas
geradas através da interligagio de blocos bdsicos é aqui descrito. Podem ser
utilizados diversos tipos de blocos bésicos tais como somadores, multiplicadores,
osciladores ¢ blocos de retardo. As estruturas estdo descritas por arquivos de
configuragdo que contém a forma de interligacdo, juntamente com os pardmetros de
funcionamento destes blocos. O objetivo principal deste trabalho ¢ a construgfo de
estruturas que correspondam a sistemas de ambientagfio de dudio, tais como filtros,
reverberadores e cimaras de eco. Como € possivel arbitrar-se as interligages entre
os blocos, as configuragdes disponiveis ndo sfo limitadas como no caso da maioria
dos processadores de efeitos implementados em ‘hardware’. Além disto, o sistema
foi idealizado de tal forma que seja ficil a criagio de novos blocos através da
simples incorporagfio de novas fungdes.

1. Introdugio

O objetivo deste trabatho ¢ descrever o desenvolvimento de um processador de efeitos para os sinais
digitais de 4udio produzidos no Laboratétio de Processamento Espectral (LPE) da Universidade de Brasilia.
Estes sinais sdo gerados pelo programa de sintese ortoestercofonica SOM-A (Arcela, 1989), em conjunto com
ferramentas de composigdo algoritmica que se fundamentam na Teoria da Arvore de Tempos (Arcela, 1984,
1986, 1991).

Através de configuragBes arbitrarias de interligagBes entre suas unidades basicas, sinais de audio
armazenados em arquivos sfo transformados pelo sistema, possibilitando a obtengfio dos mais variados tipos de
efeitos nos arquivos de 4udio de saida. Como o sistema foi idealizado visando o processamento por software,
sem o apoio de DSP's, ndo é possivel a sua operagio em tempo-real (Lobdo, Martinelli, 1992). Esta limitagdo
em parte ¢ compensada pela possibilidade de sua utilizagdo em diferentes plataformas que nfo disponham de

recursos adicionais de hardware.

2. Estrutura Interna

A estrutura interna do processador de efeitos é composta por buffers de dados, buffers de operagfes e
blocos basicos, como mostra a Figura 1. O sistema foi implementado em torno de wma estrutura totalmente
baseada no uso de buffers para que seja possivel a utilizagfo de configuragdes arbitrérias para as interligages
entre os blocos, além de possibilitar expansges futuras com facilidade.

40 XIV Congresso da Sociedade Brasileira de Computacio

Buffers de Dados Buffers de Operagdes
B[1] Opl{1] { Op2[1] | Op3[1] |Op4[1] | Pont[1]
B[2] Opl[2] | Op2[2} | Op3[3] |Op4[2] | Pont[2]
B[3] Op1{3] [Op2[3] | Op3[3] | Op4[3] | Pont[3]
BIN] opi M) | Op2ivi] op3m [oparvy | Pontgy

Blocos Basicos

/ Biopit) —— BIOpL] N\

BiOp2[i]} -+ > BlOp4fi]] B[Op2{il] BlOp4{il]

B[Op3[il] B[Op3[i]}

Bopllili—> T > BIOp4[il] 0sC | BIOp4[i]]

I A

B[(Izm} B[Opjlt\iﬂ }:[l\on[m
S /

Figura 1 - Estrutura Interna do Processador de Efeitos

Na Figura 1 podemos observar que os buffers de operagBes armazenam dados pertinentes aos blocos
utilizados na estrutura descrita pelo arquivo de configuragfo, sendo que os valores de entrada e saida de cada
bloco correspondem a buffers de dados.

Buffers de Dados

Os buffers de dados so utilizados para armazenar dados de entrada, valores intermedidrios de operagies
¢ dados de saida, ¢ foram agrupados em um vetor de clementos reais. Todas as operagtes do sistema recebem
como pardmetros indices para este vetor.

Buffers de Operagdes

Os buffers de operagdes contém pardmetros para as fungdes, o indice do buffer de dados que receberd o
resultado da operagio, além de um ponteiro para a fungfo a ser executada. Os buffers foram agrupados em um
vetor onde cada elemento apresenta quatro campos do tipo inteiro (Op, , Op,, Ops € Opa), € um campo do tipo
ponteiro, que aponta para uma das fungSes que implementam os blocos basicos. Esta maneira de se efetuar as
chamadas de fungdes permite que novas operagdes sejam facilmente implementadas.

O campo Op, indica sempre o buffer de dados que receberd o resultado da operagdo, ¢ os campos Op ,
Op; ¢ Op; indicam os buffers de dados que contém amostras de entrada ou pardmetros especificos a cada
fungo.

| Simpésio Brasileiro de Computacio e Misica 41

Blocos Bisicos

Foram implementadas fungSes correspondentes aos blocos fundameniais mais utilizados em
processamento digital de sinais. Atualmente estdo implementados os seguintes blocos basicos: somador,
multiplicador, oscilador e bloco de retardo. Em sua utilizagio é necessario especificar quais sdo os buffers de
entrada e de saida, além de parmetros especificos a cada bloco, conforme mostrado na figura 1. Desta forma a
interligaco enire os blocos pode ser determinada pelo contetdo dos buffers de operagfio. O significado dos
pardmetros para cada fungfo depende do bloco, como € visto a seguir.

Somador e Multiplicador

Os trés primeiros pardmetros sdo indices que apontam pata os buffers de dados que contém os elementos a
serem somados ou multiplicados, ou seja, os valores de entrada para o bloco. O quarto pardmetro & um indice
que aponta para o buffer de dados que receberd.o resultado da operagio, conforme mostrado na figura 1. Caso
apenas duas entradas estejam sendo utilizadas, ¢ necessério que a terceira entrada corresponda a um buffer que
apresente valor inicial ignal a zero no caso do somador, ou valor inicial igual a um no caso do multiplicador.

Bloco de Retardo

O primeiro ¢ o quarto pardmetros sdo indices que apontam para os buffers de dados utilizados
respectivamente como entrada e saida. O segundo pardmetro indica o ndmero do bloco de retardo no esquema
¢ 0 terceiro indica o retardo que serd utilizado. Como este ultimo valor corresponde a um buffer de dados que
pode estar sendo utilizado como saida de outro bloco, ¢ possivel que o seu valor se altere durante o
processamento do sinal.

Qscilador

O primeiro ¢ o segundo pardmetros sdo indices que apontam, respectivamente, para os buffers que contém
o incremento I a ser utilizado na busca em tabela, ¢ o fator A de amplitude. O terceiro pardmetro indica o
mimero do bloco de oscilagdo no esquema. Originalmente este bloco ¢ capaz de produzir apenas a forma de
onda senoidal. (Moorer, 1988).

3. O Arquivo de Configuragio

E um arquivo de texto convencional, contendo linhas terminadas pelo par <Carriage Return> + <Line
Feed>, de tal forma que pode ser gerado por um editor de texto convencional. Neste arquivo estdo descritas as
interligagGes, e os valores dos parmetros especificos dos blocos a serem utilizados de acordo com o seguinte
formato:

N ; Namero de buffers utilizados

B Be : Indices do Buffers Estéreo de Entrada

B.. By . Indices do Buffers Estéreo de Saida

Bufy ; Valor inicial para o Buffer 1

Buf, ; Valor inicial para o Buffer 2

Bufy ; Valor inicial para o Buffer N

M ; Numero de blocos utilizados

Opn Op2 Opz Opu B ; Operandos ¢ fungfo a ser chamada para o Bloco 1
Opy Opn Ops Opu F ; Operandos e fungfo a ser chamada para o Bloco 2
Opmi Opve Opms Opwe Fu ; Operandos ¢ fungfo a ser chamada para o0 Bloco M

Figura 2 - O Formato do Arquivo de Configuracio

42 XIV Congresso da Sociedade Brasileira de Computacio

As fungbes que serdo chamadas em cada caso dependem de Fj, que atualmente pode apresentar os
seguintes valores: soma = 1; multiplicagdo = 2; retardo = 3; oscilador = 4. Todos os valores sdo inteiros, exceto
pelos valores Opj; que sdo reais.

O exemplo abaixo mostra o contelido de um arquivo de configuragio que implementa um sistema de
reverberagio simples (Oppenheim, 1978).

13 ; Nimero de buffers

1 7 ; Indice dos Buffers de Entrada

3 9 ; Indice dos Buffers de Saida

0.0 ; Valor inicial de B]1} =Buffer de entrada do canal A

0.0 ; Valor inicial de B{2] = Saida do somador do canal A

0.0 ; Valor inicial de B[3] = Buffer de saida do canal A

0.0 ; Valor inicial de B[4] = Saida do multiplicador do canal A
0.25 ; Valor inicial de B[5] = Retardo do Canal A

0.7 ; Valor inicial de B[6] =g

0.0 ; Valor inicial de B{7] = Buffer de entrada do canal B

0.0 ; Valor inicial de B[8] = Saida do somador do canal B

0.0 ; Valor inicial de B[9] = Buffer de saida do canal B

0.0 ; Valor inicial de B[10] = Saida do multiplicador do canal B
0.25 ; Valor inicial de B[11] = Retardo do canal B

0.0 ; Valor inicial de B{12] = Valor nulo para soma

10 ; Valor inicial de B[13] = Valor unitario para multiplicagdo
6 ; Namero de blocos utilizados

3 6 13 4 2 ; B{4] = BJ[3] * B[6] * B[13]

1 4 12 2 1 ; B[2] =B[1] + Bf4] + B[12]

2 1 5 3 3 ; B[3] = B{2] com retardo B[5]

6 9 13 10 2 ; B[10] = B{6] * B[9] * B[13]

7 10 12 8 1 ; B[8]=B[7] + B[10] + B[12]

8 2 11 9 3 ; B[9] = B{8] com retardo B[11]}

B1 B2
ot >l T B3 > Canal A
%

B10
B7 B8 B9
+ j T > Canal B

Figura 3 - Um sistema de reverberagdo simples

{ Simpdsio Brasileiro de Computacio e Miisica 43

4. Consideracdes Finais

O Processador de Efeitos aqui descrito foi inicialmente desenvolvido em linguagem C para o sistema
operacional DOS durante a disciplina “Introdugfio 4 Computagio Sénica” (Lobdo, Martinelli, 1992) do
bacharelado em Ciéncia da Computagdo da Universidade de Brasilia. Atualmente o sistema estd sendo
migrado para a linguagem C++ para ser utilizado no ambiente Windows.

Diversas melhorias estdo sendo introduzidas, dentre as quais podemos citar:

» Suporte ao formato WAV de arquivos de dudio do ambiente Windows

o Interface grafica para a constru¢fio de estruturas de uma forma amigavel, por meio de técnicas de
“drag-and-drop”.

e Modulo de visualizago dos sinais de entrada ¢ de saida a medida em que estdo sendo processados.

¢ Macros para a descrigdo facilitada de configuragdes que se repitam em uma estrutura

5. Referéncias

Arcela, A, & Ramalho, G. (1991). A formal composition system based on the theory of Time-trees.
Proceedings of the ICMC, Montreal.

Arcela, A. (1984). As arvores de Tempos e a configuragio Genética dos Intervalos Musicais. Tese de
Doutorado, PUC, Rio de Janeiro.

Arcela, A. (1989). A Linguagem SOM-A para Sintese Aditiva. Anais do I° Simposio Brasileiro de
Computagdo e Misica, Caxambi ,MG.

Arcela, A., (1986). Time-Trees: the inner organization of intervals. Proceedings of the 12th International
Computer Music Conference (ICMC), pp 87-89, Haia.

Lobao, A. 8. & Martinelli, E. O. (1992). Processador de Sinais Estéreo. Monografia da disciplina "Introdugdo
a Computagdo Sénica”: Departamento de Ciéncia da Computagéio, UnB, Brasilia,

Moorer, V. F. (1988). Table Lookup Noise for Sinusoidal Digital Oscillators, Computer Music Journal, Vol. 1
N. 2, pp. 26-39

Oppenheim, A.V. (ed), Blesser, B. & Kates, J. M. (1978). Digital Processing in Audio Signals. Applications of
Digital Signal Processing. Englewood Cliffs, NJ, Prentice-Hall Inc.

| Simpésio Brasileiro de Computacfio e Misica 45

FracWave: Non-linear Dynamics as Timbral Constructs

JONATAS MANZOLLI
Interdisciplinary Nucleous for Sound Studies (NICS)
University of Campinas (UNICAMP)
13089-730, Campinas ~ SB Brazil
Jonatas@dsif fee.unicamp.br

Abstract

FracWave produces sounds with dynamic characteristics by means of a
parametric control of simple non-linear maps. It is a compositional tool
which allows a composer to generate new sounds and to build up sonic
structures from an atomic level. This paper discusses the basic concepts
about FracWave, it elucidates how the model was derived from recent
research on non-linear dynamics, it presents a compositional approach
based on parametric scores, and it illustrates the musical results presenting
graphics and sound examples taken from compositions created by the
author using FracWave,

Introduction

The use of Non-linear Dynamics (NLD) in music is in line with the recent development of
scientific models led by the Theory of Chaos (Gleick, 1987). Methods derived from NLD have been
applied to Acoustics - a basjc reference is found in (Lauterborn & Parlitz, 1988), and a method of
Analysis of Musical Signal is presented in (Bernardi, Bugna & De Poli 1992). In Algorithmic
Composition, there bas been research on applications of Iterative Maps to describe compositional
systems (Bidlack, 1992). In parallel, the use of NLD have revitalised Timbral Design (Truax, 1990;
Scipio, 1990), in these methods non-linear maps are used to organize musical structures from an

atomic level.

FracWave is in line with the third perspective above. It aims to develop micro-structural constructs
to produce new types of sonic behaviour and to create sounds with complex and dynamic
characteristics. Numerical material generated by non-linear maps shapes waveforms i.e. the method
is an application of mathematical iterative processes. Therefore FracWave is a synthetic and heuristic
approach. Using Smith’s definition (Smith, 1992) it could be described as an Abstract Algorithm for
Sound Synthesis. It produces sounds with rich spectra and it does not intend to simulate either an

acoustic instrument or a classical acoustic model.

This paper is in line with previous publications in which the author introduced FracWave as 2 sound
generator, discussed its possible musical applications and presented an extensive documentation of
the method (Manzolli, 1992,1993). The report here concentrates on compositional issues.
Nevertheless it recapitulates FracWave basic ideas, it summarizes the relations between NLD and
FracWave, and it presents a mathemnatical formulation of the algorithm. After that, sonic and

compositional issues are discussed and followed by graphics and sound examples.

46 X1V Congresso da Sociedade Brasileira de Computacdo

FracWave Basic Ideas

The basic concept behind FracWave is: the model was developed in contradistinction to digital
techniques which use wavetables as invariant sound synthesis units. FracWave produces sounds using
numerical buffers controlled by simple non-linear dynamical systems. These buffers are coined
Dynamic Wavetables and they replace the traditional digital oscillators. The idea is to use algorithmic
manipuiation to generate complex types of sonic behaviour. There are models similar to FracWave
concerned with this manipulation of data which then produces abstract waveforms. Berg (1979)
developed a sound synthesis language called PILE. His method was described by him as one single
sound, the perception of which is represented as a function of amplitude distribution in time.
Another approach was presented recently by Serra (1992), a new achievement in Xenaki’s stochastic
work. This method is based on stochastic control of waveforms defined by polygonized lines.

The FracWave algorithm is divided into two kinds of processors: a) non-linear processors which are
a set of eight simple non-linear maps and b) linear processors which are the Dynamic Wavetables.
The basic principle is to work with a sound generator unit which produces a time-varying waveform
based on two iterations in parallel: the non-linear map’s iteration and the Dynamic Wavetable
iteration. Finally, the basic elements of the method presented here are: a) non-linear maps - source
of waveforms, b) Dynamic Wavetables - micro-structural constructs and ¢) Structural Links (Sound
Cells and Sound Streams) - tools to link the micro with the macro level of composition.

Phase Space Analysis

Feedback applied to simple mathematical models could generate chaos. In Chaos methodology it
is visvalised in a space called phase-space or state-space in which the coordinates are the degrees of
freedom of the system. Each point in the phase-space represents the entire state of a dynamical
system in a certain moment of time. A non-linear map generates single points, limit cycles, simple
or chaotic oscillators in the phase-space. These graphics are named attractors or strange attractors
(i.e. in a chaotic case) which are asymptotic limits of the system’s solution as time approaches
infinity.

Based on these concepts the author developed a software tool to analyse the phase-space graphics.
The FracWave’s thesis were derived from this analysis as follows: a) a non-linear map produces
periodic, quasi-periodic or chaotle motion by changing its initial conditions (X0, Y0) or its
parameters (A, B, C) (see Table 1), b) this behaviour in the phase-space is visualised by an attractor
(see Figure 2) and c) the numerical behaviour of the map in the phase-space mirrors the sonic
behaviour of a waveform.

Non-lincar Maps

. The author created a set of eight simple non-linear maps to use in research. This text does not
include the complete set, see (Manzolli, 1993) for more information. Three non-linear maps used in
FracWave are presented below:

{Xm =Yy —siga(B-Y;)sin(Cnk)
Yk+l =A- Xk

| Simpdsio Brasileiro de Computacio e Msica 47
Pl

{Xk+1 =Y, -sign{Xy)y/|BX, |
Y =A =X

[xk+l =Y, -sign(X,)+ [BXy —C|
Y = A =Xy

The sequence {Xy) produced by the maps is mapped into the interval [-1,-1] 1o be used as waveform.
Additionally, linear interpolation and oversampling are applied to smooth the resultant curve.

Implementation and Mathematical Formulation

The. computational implementation of the FracWave’s sonic construct ie. Dynamic Wavetable
(DW), is based on a numerical buffer which is read using one increment (I,) while it is
simultaneously refilled with new values from a non-linear map using another increment (J;). A DW
is a delay line (Figure 1 illustrates FracWave implementation) nad it is also used as an Average Filter.
This procedure could be related to the LAsy Technique (Chareyron, 1990) and Physical Models
(Sml!h, 1992). The average process used in FracWave slows down the energy of the generated sound
working as a dumping factor. It is a digital filter which concentrates the spectrum’s energy on an
average partial. The implementation is described by two equation as follows:

Y, =W,
W] = X +—-——I—OL‘ZA Y
n p+1m=0 m Xn-m

where Y, is the oﬁtput sequence, W[.] is a DW, X, is the non-linear maj i
> Yy » WL v, p sequence, 0G o 1is a
combination factor and {Amlp-0,.m Is the coefficients of the average filter, S

ey

Figure 1, on the left, is a diagram of the FracWave Algorithm Figur x the right, is a soay
’ Vit . C 2,
tf four attractors in the phase-space. ® ’ on the right, is a sequence

48 X1V Congresso da Sociedade Brasileira de Computacio

Structural Links

The structural manipulation described here was inspired by Granular Synthesis (Roads 1985).
The author developed two tools to build sonic structures: a) Sound Cell - the parameters which
controls FracWave (see Table 1) and b) Sound Stream - parametric score produced by Sound Cells.
Starting from the micro level, two structural link build up macro structures: a) First structural link -
Sound Cells which control sound segments (50-100 ms), form Sound Stream and b) Second
Structural Link - Sound Segments (500-1000 ms) generated by Sound Stream are transposed and
superimposed to build macro sound events.

A sequence of Structural Steps constructs Sound Stream in the First Structural. Starting from an
initial set of Sound Cell, operations such as permutation and sequencing are used to produce a Sound
Stream. This new Sound Stream is used as a unitary Sound Cell in the next Structural Step. This
iterative process produces a growth through levels of scale which forms the Sound Streams. These
parametric scores generate a Sound Palette which is used in the next structural link. In the Second
Structural Link concatenation of the sounds of Sound Palette is produced by means of permutation
in the horizonal axis (time axis), and superimposition and frequency transposition in the vertical
axis (frequency axis). In parallel, a Triangular Window is used to splice these sounds for it smooths
gaps between two waveforms avoiding glitches in the resultant sound.

First Structural Link Second Structural Link
Fiouctural " o
tens e o [PO
PR oo oV

N i Y v

SOUNA BTroan e p

Mutations of Sound Cells

To create a Sound Stream a composer needs to input a great deal of data from the computer
keyboard. Thus a computational tool was developed in research to generate a Sound Stream as a
sequence of parametric mutations of an original Sound Cell. A composer has therefore to input less
data as follows: a) an original Sound Cell, b) a set of three parameters to conirol the percentage of
change in the Sound Cell and ©) a set of three parameters to determinate the parameters involved in
change. After that, the computer generates a Sound Stream using these three parameter sets to
control an iterative random process. Notice that, the Mutation Operations is used as First Structural
Link. Finaliy, the Interative Randorm Equation is presented as follows:

Pir1 = Py + (Rnd()-0,5)*C)/100

where Py is a Sound Cell parameter, (Cli=1_3 are the percentual of changing, and Kis determinated
by a random choice in (K}j-_3.

duration non-lincar magp dynamic wavetable average filter

millisecs | A | B | C Xo | Yo Fose | Frer | ©€ {Am}m=0...l’

Table 1 presents the parameters of a Sound Cell. Notice that Frop and F g are related to J, and I by
the the sams equation J; = ROUND@®*Fop/Fg) MOD L with Fs = sampling frequency and L is the
number of points in the DW.

| Simpésio Brasileiro de Computacio e Misica 49

Composing Soundscapes

The sonic aim of FracWave was inspired by the complexity of sounds found in nature. The
research focused on generating sounds which evoke forces of nature recalling phenomema such as
turbulences, wave-breaks, explosions etc; a timbral pallete distincts from more typical electronic
ones. The spectral typology of the sounds produced by FracWave can be related to the deseription of
Smalley (1986) in Spectro-morphology and Structuring Processes. Most of these sounds are
allocated to the pitch-effluvium continnum, as defined by Smalley, between nodal spectrum and
noise. These sounds have complex internal morphologies. Therefore the composer has to confront
the compositional challenge: how to organize them in a convincing musical way? Wishart (1985)
presents a classification of sounds with complex morphology which is useful here. In his words: 2
number of archetypes which allow us to classify these complex sounds perceptually, such as
Turbulence, Wave-break, Open/Close, Siren/Wind, Creak/Crack, Unstable/Settling, Shatter,
Explosion, Bubble.

From one point of view the sounds produced by FracWave have complex internal morphologies,
from the other these morphologies are very characteristic (such as Turbulence, Wave-break). Thus it
is possible to operate with these peculiar features to produce sound-images. The compositional tool
for organizing complex sounds could be to manipulate them in a symbolic context, and to associate
the musical meaning with the sonic behaviour of these complex constructs.

Let us to exemplify the compositional approach presented here with ideas from Berio’s vocal work
A-Ronne (1974). This piece was based on a poem by Sanguineti in which he arranges quotations
from different languages in segments and agglutinates them in hybrid sentences. There is an
example of the poem A-Ronne as follows:

aahcha:hamnvanfang
in:in principio: nel mio
prineipio:
am anfang: in my beginning

The structural manipulation used by Sanguineti was to re-create expressions from different
languages copying words and linking them according to similarities of meaning. The aesthetic view
of A-Ronne was described by Berio (1976) as changes in expression imply and document changes in
meaning. In the same way the poem A-Ronne was constructed using words, a electroacustic suite
called Turbuléncias was composed using sounds. The compositional approach was an agglutinative
technique in which sounds (i.e. equivalent to words) were combined to form sound-images (i.e.
efuivalent to sentences) - similarities between sounds were related to the similarities between sonic
archetypes (see Wishart above).

For instance, the name of the first piece in Turbuléncias give us a cue to understand the aesthetic of
the piece. Aglomerados is Portuguese for agglomerates, which are fragments of rock fused together
in a mass. An agglomerate material is a structure which grows into a mass, for example a growing
crystal. Within this metaphorical context, it is possible to say that sounds could be compacted to
form a soundscape of musical crystals. This idea is related to two different sonic structures in
Aglomerados: Monoliths and Creatures. The first one resambles massive and dense structures such
as compacted stones, diamonds. The second one resambles granular sound structures, like graphite.

50 X1V Congresso da Sociedade Brasileira de Computacio

The micro structure of these two sonic entities is controlled by Sound Cells and Sound Streams as
described above. They differ from each other by the way they are built at the First Structural Link.
Monoliths are compact structures with an implied amalgamation of atomic sound/waveforms. This
is created by using Sound Cells with durations between 50-100 milli-seconds and Sound Streams
with the number of Sound Cells between 10-15. Creatures are rhythmic structures, an implied
increase of distinction between the components micro sounds. This is produced by using Sound
Cells with durations between 30~70 milli-seconds and Sound Streams with the number of Sound
Celis between 5-10.

Graphic Examples

The examples below illustrate Sound Transformations produced by FracWave. The first example
(from left to right) describe a spectral shift which concentrates the spectrum’s energy on an average
partial produced by the Average Filter. The second example shows a spectral development derived
from an initial Sound Cell and a subsequent Sound Stream.

In the graphics above the horizontal axis is frequency, the vertical axis is amplitude and the third
axis describes the time evolution from the background to the foreground.

Discussion and Conclusion

The application of non-linear maps as sonic constructs confronts the musician with a compositional
challenge: to organize chaotic sounds in a meaningful and coherent musical structure. On one hand,
this can be approached by agglutinative techniques and by the simbolic development of chaotic
soundscapes. On the other hand, this complex sound material produces a sonic paradox - while it is
the musical construct it may cause sonic opacity, which will serve rather to de-construct the music.
The composer needs therefore to handle this material with studio techniques developed to avoid
losses in structural clarity,

The next step on this investigation is to use FracWave to transform environmental sounds. These
sounds could be rich sounds such as the material found in the Brazilian Soundscape. In this
implementation, a DW filled by these samples could be combined with the waveforms generated by
FracWave. Another possibility, could be to apply the average filter as a dumping factor creating
spectral changes in the original sound. It is possible to project other transformations, but the main
compositional issue is to integrate FracWave’s synthetic sounds which resamble natural phenomena
with similar sounds found in nature. This could produce new sonic textures which either FracWave
or the natural sounds generates by jtself.

| Simpésio Brasileiro de Computacio e Miisica 51

References

Gleick, J. (1987). Chaos: Making a New Science. New York: Vintage.

Lauterborn, W. & Parlitz, U. (1988). Methods of chaos physics and their applications to acoustics. Journal of the
Acoustic Society of America 84(6):1975-1993.

Bernardi, A., Bugna, G.2. & De Poli, G. (1992). Analysis of Musical Signal with Chaos Theory. Proceedings of
the International Workshop on Models and Representation of Musical Signats, Capri.

Bidlack, R. (1992). Chaotic Systems as Simple (but complex) Compositional Algorithms. Computer Music
Journal 16(3):33-42.

Truax, B. (1990). Chaotic Non-linear Systems and Digital Synthesis: an Exploratory Study. Proceedings of the
ICMC, Glasgow.

De Scipio, A. (1990). Composition by Exploring of Non-linear Dynamic Systerns. Proceedings of the ICMC,
Glasgow.

Manzolli, J. (1992). FracWave Sound Synthesis. Proceedings of the International Workshop on Models and
Representations of Musicals Signals, Capri.

Manzolli, 1. (1993). Musical Applications Derived from FracWave Sound Synthesis. Proceedings of the 94th
Audio Engineering Society Convention, Berin.

Manzolli, 1. (1993). Non-linecar Dynamics and Fractals as a Model for Sound Synthesis and Real-time
Composition. PhD) dissertation submitted to the University of Nottingham, England.

Berg, P (1979). PILE - a language for sound synthesis. Computer Music Journal 3(1):30-41.

Serra, M. (1992). Stochastic Dynamic Sound Synthesis: a new Achievement in lannis Xenaki’s Work.
Proceedings of the International Workshop on Models and Representations of Musical Signals, Capri.

Chareyron, J. (1990). Digital Synthesis of Self-modifying Waveforms by Means of Linear Automata. Computer
Music Journal 14(4):25-41.

Smith, I (1992). Models of Music Signals arising from Results in Physics, Acoustics, and Signal Processing.
Proceedings of the Interational Workshop on Models and Representation of Musical Signals, Capri.

Roads, C. (1985). Granular Synthesis of Sound. Foundations of Computer Music, ed. Roads, C. and 1. Strawn.
Cambridge, Massachussetts: The MIT Press.

Smalley, D. (1986). Spectro-morphology and Structuring Processes. The Language of Electroacustic Music, ed.
Emmerson, 8. London: The Macmillan Press Ltd, pg 61-93.

Wishart, T. (1985). On Sonic Art. York: Imagineering Press, pg 100- 103.

Berio, L. (1976). Text A-Ronne. DECCA ZAL 14741 disc).

| Simpésio Brasileiro de Computacio e Musica 53

An Overview of Criteria for Evaluating Synthesis and Processing Techniques

DAVID A. JAFFE
295 Pudue Ave.
Kensington, CA 94708
david@jaffe.com

Abstract

A wide variety of synthesis and processing techniques have been invented. The
question may arise as to which is best. It turns out there is no simple answer. To
help clarify the issues, we present a list of ten criteria for evaluating synthesis and
processing techniques and give examples of well-known techniques that succeed
especially well or fail especially poorly in each area.

This paper is forthcoming (in expanded form) in Computer Music Journal.,

Introduction

A synthesis technique is a strategy for generating sound samples, based on some control information
called parameters. Parameters generally change at a rate that is significantly slower than the audio sampling
rate. Also, while sound samples are usually produced at a constant rate, parameter-setting messages are often
sporadic and irregular. For example, in the familiar Yamaha DX7 synthesizer (Cpowning and Bristow, 1986),
the synthesis technique is FM (frequency modulation) synthesis, which produces a steady stream of audio
samples, while MIDI pitch bend is a parameter that changes only when the performer moves the modwheel or
foot pedal. For a historical summary of synthesis techniques, see, for example, (Smith 1991.)

A processing technique is similar to a synthesis technique, except that it includes an additionat input of
one or more audio sample streams at the audio sampling rate. An example of a common processing technique
is reverberation. Here, the parameters are controls such as the delay before the first reflections, the balance
between the reverberant and dry signals and the decay rate of the echoes.

A wide variety of synthesis and processing techniques have been invented. The question may arise as
to which technique is best. It turns out there is no simple answer--the best technique depends on the priorities
of the user and the problem to be soived.

To help clarify the issues, we present a list of ten criteria for evaluating synthesis and processing
techniques and give examples of well-known techniques that succeed especially well or fail especially poorly in
each area. The first four criteria are concerned with the usability of the parameters: Are they intuitive? Does a
change in a parameter have a perceptible effect? Do they map to physical attributes of musical instruments or
other physical sound-producing mechanisms? Are they "well-behaved” or wildly non-linear? Other criteria
deal with the sounds produced: Do they retain their identity in the context of variation? Can all classes of
sounds be produced? Are there techniques for deriving parameters for real-world models? The remaining
criteria are concerned with efficiency and implementation. How efficient is the technique? Does it have an
undesirable unavoidable latency? How sparse is its parameter control stream?

The intention here is not to survey all known techniques, but to outline the criteria that make a given
technique suitable or unsuitable to a specific purpose. A technique that is weak in a certain area can often be
made stronger by combining it with another technique to produce a hybrid.

How Intuitive are the Parameters?

This topic is concerned with whether the parameters map in an intuitive manner to musical attributes
such as musical dynamics and articulation, or whether they are mere mathematical variables with very little
correlation to real-world perceptual or musical experience.

In the old analog synthesizer technique of low-pass filtering a complex waveform, the bandwidth of the
low-pass filter affects both the brightness and the amplitude of the sound. This control is very much like a
musical "dynamics” parameter. In a real-world instrument, loud notes tend to have more significant higher

54 XIV Congresso da Sociedade Brasileira de Computacdo

partials than soft notes, due to physical non-linearities becoming more prominent as the instrument is played
louder. In the synthesis simulation, low values of the filter bandwidth correspond to a dynamic of pianissimo
while high values correspond to fortissimo. This correlation is especially effective if the filter bandwidth is
adjusted on a note-by-note basis so that a requested fundamental amplitude is obtained uniformly regardless of
frequency, thus decoupling distance (largely a function of amplitude) from dynamics (primarily a function of
brightness) (Jaffe and Smith 1983.) .

In contrast, parameters of non-linear synthesis methods, such as complex FM (Schottstaedt 1977), can
be quite non-intuitive. Although an extremely useful technique, it has the property that changing the FM index
of a cascade modulator slightly can cause a drastic and difficult to predict change in tone quality, enough of a
change to turn a drum into a woodblock. This situation may be merely annoying to a composer, who can take
the time to find the proper value for his or her application, but it can drive a performer crazy who is trying to
control such a parameter from an instrument in front of a live audience.

How Perceptible are Changes in Parameters?

Changing a parameter by a significant amount should have an obvious audible effect. We call such
parameters strong or powerful, in contrast to weak parameters whose effect is barely audible. Typically, the
more parameters a technique has, the weaker each parameter is. Parameters that are too weak leave the
composer to wander in the dark, setting parameters to arbitrary values, since it’s not possible to hear any
difference. On the other hand, parameters that are too strong can also cause problems. If a tiny change causes a
huge effect, a performer may have difficulty controlling the technique.

Again, the filter bandwidth of a low-pass filtered complex waveform is a good example of a reasonably
strong parameter. A single parameter controls a clear effect of brightness. In contrast, additive synthesis, in
which a tone is produced by a weighted sum of sinusoidal components, is an example of a technique with weak
parameters. If you change the amplitude envelope of a less-important harmonic, the change can be completely
inaudible.

A technique with weak parameters can be transformed into a related technique with more powerful
parameters, often using the same underlying algorithm. For example, an additive synthesis brightness
parameter can be defined that behaves similar to the low-pass filter brightness parameter. Such a parameter can
be defined as a mera-parameter that simply scales a set of the existing additive synthesis parameters. We would
define the user-supplied partial amplitudes and frequencies as the arrays Amps[i] and Fregs[i], respectively,
where 'i’ is the partial index. In normal additive synthesis, the Amps values are used directly. With the new
brightness parameter, the actual value applied could be defined as:

ActualAmps[i] = Amps[i] * MAX(brightness,0.001)»
log2(MAX(Fregs(i],100.0)/50.0)

Here, a brightness of 1.0 represents no modification and a brightness of .001 represents maximum low-pass
filtering. (log2() is the log function, base 2 and MAX() returns the maximum of its arguments.) This technique
can be viewed as a modified form of FET filtering, where the additive synthesis is used in a manner similar to
an inverse Fourier transform. (In standard FFT filtering, a sound is analyzed via the Fourier transform, the
analysis data is multiplied by the frequency response of an FIR filter, and the result is inverse-transformed.)

A particularly rich example of the use of meta-parameters in conjunction with additive synthesis allows
the user to describe the sound as a path through a multi-dimensional space of timbres. Each dimension of a line
segment function describes the scaling of a particular timbre. These values are added and the results are used to
scale the additive synthesis harmonics, producing complex interpolations (McNabb, 1981.)

A technique with even weaker parameters than additive synthesis is digital sampling, where each
sample value can be viewed as a parameter. In fact, sampling can be considered the "identity synthesis
technique," where the parameters are the samples themselves. Certainly, with the exception of introducing or
removing a click, adjusting a single parameter (sample) does not produce a very noticeable effect. In practice,
most samplers actually use a hybrid technique that includes filters, amplitude envelopes, and other more
reasonably-parameterized processing modules.

How Physical are the Parameters?
We call a physical parameter one that not only mimics the behavior of a real-world instrument, but

actually controls a synthetic instrument in the same manner as its real-world counterpart. Physical parameters
are ideal for creating complex behaviors that arise during unstable moments in a tone’s evolution, such as

| Simpdsio Brasileiro de Computacio e Miisica 55

during instrument attacks and transitions between notes. The beauty of techniques with physical parameters is
that they don’t require a formal analytical model or data base describing the behavior of the instrument under all
circumstances. For example, neither the player/composer nor the implementer of the technique itself need
understand exactly what happens in the output waveform during an attack or transition--the physical nature of
the parameter causes the correct result.

One of the strongest arguments for physical modeling synthesis is that the parameters are exactly those
used by a human instrumentalist. A waveguide violin model (Smith 1993) (one type of physical model) has
bow pressure and bow velocity parameters; a clarinet model has a mouth breath pressure parameter (Cook
1988). Of course, playing a real-world violin or clarinet well is no trivial matter and requires years of training
and practice. This same training may be needed, though in the virtual domain, to play the physical models
(Chafe 1985.) For musicians who are not violinists or clarinetists, non-physical controls that are still intuitive
may be more appropriate.

An example of a non-physical parameter is the amplitude of an additive synthesis overtone. Changing
the amplitude of the third harmonic is not a very relevant control when attempting to synthesize a violin. While
meta-parameters could in principal be defined to map pseudo-physical parameters to any underlying technique,
we often don’t have the acoustical knowledge necessary to adequately define this mapping.

How Well-Behaved are the Parameters?

Ideally, a change in a parameter produces a proportional change in the sound. If a small parametric
change produces a wild unpredictable sonic result, the parameter is called "poorly-behaved" and can be a
nightmare for composers and performers alike.

It is commonly thought that linear techniques, such as additive and subtractive synthesis, always have
well-behaved parameters. However, such systems are linear only when the parameters change at slow rates
relative to the sampling rate. When parameters change rapidly, energy is injected into the system, allowing the
possibility of unpredictable or unexpected results. For example, consider a simple amplitude scaling that is
allowed to be changed at an audio rate. This situation is equivalent to amplitude modulation (AM) synthesis. If
the modulation is sinusoidal, two sidebands are produced for each component in the original signal, a non-linear
effect. These sidebands are at frequencies corresponding to the frequency of each component plus or minus the
modulating frequency. If the modulation is non-sinusoidal, the effect is even more complex. Especially
dangerous are filter structures that can become unstable during transitions from one set of coefficients to
another.

An example of a technique that exhibits excellent behavior during transitions is the waveguide-based
vocal synthesis model of Perry Cook (Cook, 1990), which models the vocal tract as a series of waveguide
filters, each representing a cross-section of the tract. Changing vowels has a physical interpretation--one or
several sections shrink or increase in diameter. Interpolating between vowels corresponds directly to real-world
spatial interpolation and all intermediate values have an intuitive, physical interpretation and are well-behaved.

Chaotic behavior can arise in non-linear feedback techniques (Mclntyre and Woodhouse 1983), often
used in physical models of wind instruments. In fact, this "extreme sensitivity to initial conditions" is often
given as the very definition of a chaotic system. Still, with sufficient care, such a model can be made to operate
inregions of its state space where it behaves predictably and effectively.

How Robust is the Sound’s Identity?

Here we are concerned with how well the sound retains its identity in the context of variation. This is
the author’s personal favorite criterion. To do an effective musical instrument simulation--one that is more than
a mere snapshot of a moment--it is essential to be able to synthesize "expression,” which we define as "great
variety in the context of a particular perceived source." For example, a violinist can make many changes in his
or her sound, but the sound is still clearly a violin--it doesn’t suddenly turn into a trumpet. Many synthesis
techniques can approach a particular note on a particular instrument very closely, but fail miserably in making
the family of perceptually-related sounds that is required for a true expressive instrument simulation.

Physical models do exceptionally well in this area. For example, the extended Karplus-Strong plucked
string (Karplus and Strong 1983, Jaffe and Smith 1983), is a partially-physical model based on waveguides, It
has the property that it sounds like a plucked or struck string no matter what you to do to it. You can vary such
parameters as pick position, string flexibility, string thickness, dynamics and decay characteristics to a great
degree, providing a rich expressive vocabulary while never leaving the realm of string-like identity.

On the other end of the spectrum, pure sampling is a notorious offender in this area. A single trombone
sample, on first hearing, is impressive because it sounds exactly like a trombone. But there is a strong tendency
for a composer to assume it is an actual trombone, rather than a single snap-shot of a trombone. He or she may

56 X1V Congresso da Sociedade Brasileira de Computacio

be tempted to compose a variety of articulations, durations, dynamics and timbres only to discover that his or
her supposed trombone is a two-dimensional cardboard cut-out of the real thing that falls over as soon as it is
pushed lightly in any direction.

The power and flexibility of sampling can be greatly enhanced by using filters for dynamics and linear
interpolation for timbral variety. For example, you can record a quiet trombone note and a loud trombone note
and, if care is taken to match the pitch and phase exactly, do linear interpolation between the two to get a range
of dynamics. If a huge amount of memory is available, another solution is to use a large library of samples that
represent the trombone in all of its guises, including various attacks, dynamic contours and vibratos.
Nevertheless, despite its seductive realism, sampling presents both a challenge and an opportunity to the
composer attempting to use it in an expressive manner,

How Efficient is the Algorithm?

Efficiency is an extremely important criterion. In a real-time context, it determines the number of
voices that are possible on a given piece of hardware. In non-real time contexts, it determines the amount of
time a composer must wait before hearing the results of a computation. Given a fixed amount of time to
complete a piece, an extremely long turn around time translates into fewer iterations, resulting in a less refined
result.

Determining the efficiency of an algorithm is more complicated than it might first appear. It is not
merely a matter of comparing processing benchmarks. Numerous aspects of a technique and its implementation
come into play. We divide these into three categories: memory requirements, processing details and control
stream attributes.

Memory

It is a well-known axiom of computer programming that you can often trade off memory against
processing power. For example, when doing wavetable synthesis (Mathews 1969), in which a single period of a
waveform is stored in memory, you can store a huge table and use a non-interpolating ("drop-sample')
oscillator. Alternatively, you can store a smaller table and use a more expensive oscillator that interpolates
between samples in the table. For that matter, using a wavetable oscillator at all is a memory optimization. A
wavetable oscillator multiplied by an amplitude envelope can be replaced by a pre-computed version of the
entire resultant waveform; the result is less real-time computation at a much greater memoxy cost. . On the
other end of the spectrum, the waveform can be computed analytically using any of a number of techniques.

For example, if the wavetable is a sine wave, three alternatives to wavetable- based oscillators are marginally
stable two-pole filters, evaluation of a complex phasor (Gordon and Smith 1985) and waveguides (Smith and
Cook 1992.)

Some techniques have a memory requirement that changes with the parameter values. The Karplus-
Strong plucked string, as well as several other waveguide-based modeling technique requires more memory for
lower pitches than for higher pitches.

Processing

The issue of processing power itself is quite complex and depends to some degree on the details of the
processor architecture. Some traditionally expensive techniques, such as finite element modeling (numerical
integration of the difference equations that describe masses and springs), are well-suited to parallel architectures
such as array processors. As another example, an algorithm with an active code size that fits within the cache
of a RISC chip will run many times faster than one that overflows the cache (Freed, Rodet and Depalle 1993.)
Techniques with minimum changes in program flow are well-supported by DSPs and other heavily pipe lined
architectures. Of course, special-purpose hardware can increase enormously the efficiency of a technique.

Just as memory usage can be dependent on parameter values, some techniques have a processing
requirement that changes with the parameter values. The time-domain implementation of the Chant FOF
(Rodet 1984), which does voice synthesis (as well as synthesis of other resonant systems) by adding up
overlapping vocal tract impulse responses, becomes more expensive as the frequency rises--there are more pitch
periods per second, and thus more additions and table-lookups per output sample.

Numerical characteristics also come into play. Can a technique be implemented in fixed point or does
it require a large dynamic range? An algorithm that requires floating point has a higher cost associated with it
on most systems. For example, some filtering structures are easier to implement in a floating point environment
where overflow of intermediate values need not be a concern.

" A related but different issue is how many bits of precision are required? It is important not to confuse

| Simpésio Brasileiro de Computacio e Misica 57

precision anq dynamic range. When an algorithm uses floating point, it is trading off precision for dynamic
range, assuming a constant word size. For example, 32-bit unsigned floating point typically has 24 bits of

recision, while unsigned 32-bit integers have a full 32 bits of precision. Thus, on a 32-bit machine, integers
actually have more precision than floating point numbers.

Some algorithms change their behavior depending on the word precision. This is especially likely with
non-linear recursive systems, such as non-linear steady state oscillations in physical models, where small
deviations in either calculation accuracy or initial conditions can completely alter the path and final state of
such systems. In fact, it may make the difference between oscillating at all or not oscillating.

Another example of word precision affecting algorithm behavior is in regard to "limit cycles,”
annoying oscillations that arise at the end of an exponential decay and continue forever. If rounding is used,
even the convergent rounding used in the DSP56001, which guarantees there will be no bias accumulated by the
rounding, it is likely that limit cycles will arise. Since limit cycles tend to be confined to the lower bits, the
more word precision, the less objectionable the limit cycles. One way around this is to implement truncation
toward zero instead of rounding. But this tends to make exponential decays faster. For example, an
exponential decay degenerates to linear in such systems; an exponential ratio constant of 0.99999999 just
causes a 1 to be subtracted from the magnitude each sample, yielding a linear decay (Cook 1993.)

Control stream

The third efficiency consideration is the heaviness of the required control stream. Even an inexpensive
algorithm, if it has a very dense control stream, may be difficult to implement in real time. Many systems use
two processors, one dedicated to sound computation and the other handling control data. The difficulty comes
from the cost of getting the control data to the sound processor. Even if there is only one processor, the control
stream may consist of many mega-bytes of data, more than can fit in RAM, so disk space and disk bandwidth
become scarce resources. Compression may be of use here.

When evaluating an algorithm’s control stream requirements, it is important to differentiate between
techniques that require dense bursts of parameter update messages as opposed to those with relatively steady
streams of messages. A well-spaced fairly-dense control stream may be easily managed by some systems that
fail when the same volume of control data is clumped in large bursts. For example, if an amplitude envelope
changes with each note, it may actually be more efficient to feed the break-points to the processor one point ata
time, rather than sending the entire envelope in a burst at the beginning of each note. This leadstoa closely
related issue...

How Sparse is the Control Stream?

In designing, implementing or using a synthesis technique, it is important to keep in mind where the
actual work is being done. Is it the synthesis method or the control data that is actually doing the work? This is
an often-overlooked distinction. Some synthesis techniques require such a bulk of control data that it actually
exceeds the number of samples synthesized. This state of affairs is not necessarily bad, because the control data
may be in a more useful parameterized form, as in the case of phase vocoder-based additive synthesis (Dolson
1986, Portnoff 1977.) Nevertheless, it is important to keep this criterion in mind. In fact, many synthesis
techniques can be made nearly equivalent when fed enough data. A single sine wave that is frequency-
modulated very quickly with a complex signal can produce intelligible speech. We can easily imagine absurd
synthesis techniques where all the information is in the control stream. An example is the "modulated constant
technique,” defined as the number 1.0 multiplied by an "appropriate” control stream!

It is hard to come up with an example that ideally optimizes this criterion because the amount of
control information that is necessary (a negative characteristic) is often directly proportional to the amount of
control that is possible (a positive characteristic.) The best technique here is one where everything is pre-
determined, a situation that is, by definition, non-interactive. Once interactivity is removed from the picture,
very little information is required. For example, there is an old joke where a sailor says "I know two songs. One
is Yankee Doodle. And the other isn’t." Thus, with one bit you can represent both Beethoven’s Ninth
S}frr}phony and the entire Ring Cycle of Wagner. Similarly, most MIDI synthesizers are designed for a
minimum control stream because of the limitations of MIDI itself. This is not necessarily an advantage, since it
!1mits the expressive bandwidth between the player and the synthesis. Still, especially in real-time
implementations, control stream density must be monitored carefully or it can become a major bottleneck.
Control stream optimizations, such as suppressing duplicate parameter-setting messages, lazy garbage
collection and shared resource management can significantly reduce the density (Jaffe 1990.) Meta-parameters,
such as the additive brightness parameter described above, can be defined. These are then expanded into lower

58 XIV Congresso da Sociedade Brasileira de Computacio

level parameters on the processor itself, thus reducing dramatically the control bandwidth. This is actually one
form of control stream compression.

Perhaps the best way to look at the criterion of control stream density is to hold the amount of possible
control constant, and proceed to minimize the control stream density for that amount of possible control.
Physical models excel in this regard, since they tend to have a small number of powerful parameters.

Many control stream optimizations are specific to particular techniques. Pure phase vocoder-based
synthesis (oscillator bank resynthesis), as well as short-time inverse Fourier synthesis (inverse FFT resynthesis)
(Rodet and Depalle 1992), are extremely data-intensive techniques. Yet, there are ways this cost can be
reduced. First, if an appropriate window is chosen, the window may skip ahead in the overlap-add process.

This produces a dramatic decrease in the amount of control data. Further decreases come from the field of
psycho-acoustics. In frequency domain techniques such as MPEG audio encoding (MPEG 1991), partials may
be omitted if they are of low enough amplitude that they are entirely masked by neighboring partials. Similar
techniques make possible the DCC and mini-disk consumer audio formats. However, such data reduction
should be avoided if post-processing is planned, since a partial that was originally masked may be exposed
during the post-processing phase. Finally, an efficient alternative to the phase vocoder has recently been
developed (Serra and Smith 1990), that separates the analyzed sound into deterministic and stochastic
components. It then models the deterministic portion using traditional phase vocoder methods, while modeling
the stochastic portion with filtered random noise. For a wide class of real-world sounds, this results in a
dramatic reduction not only in the control stream density, but also in the synthesis computation itself.

What Classes of Sounds can be Represented?

Is there a class of sounds that is impossible to produce with a given synthesis technique? While some
techniques can produce any sound, given appropriate control data, others are less general. For example,
inharmonic sounds are impossible with pure wavetable synthesis. However, once you add frequency or
amplitude variation, which is almost always used to some degree, inharmonic sounds become possible. If you
have an amplitude or frequency envelope with a rapid attack, you are actually producing inharmonic partials
momentarily during the attack portion of the sound. For some synthesis techniques, the lack of flexibility can
actually be viewed as an asset. A particular physical model, say a brass instrument, may synthesize only brass
sounds. But this is exactly the property of "identity in the context of diversity" that was lauded as a great
advantage in the fifth criterion above ("How Robust is the Sound’s Identity?").

What is the Smallest Possible Latency?

Some techniques have an inherent and unavoidable latency that may cause problems in an interactive
situation, where a sound must be computed and played immediately in response to an asynchronous event. A
typical example is a MIDI keyboard triggering-a sound that is synthesized on the fly. The situation also arises
in the processing of live sound. Clearly, the sound cannot be computed in advance because it has not happened
yet. If the technique has an inherent latency, there will be no way of avoiding a latency between the onset of the
incoming sound and the resultant output sound.

Techniques with minimum latency are those that can consume and produce samples one at a time, with
the first output sample emerging as soon as the triggering event has occurred or the input sound has begun.
Many of the techniques mentioned in this paper, including FM, waveguide-based physical modeling, additive
synthesis and wavetable synthesis have this property. Sound processing techniques such as reverberation (as it
is ordinarily implemented), flanging, and equalization similarly follow this rule.

Other techniques may a require significant latencies. FFT-based sound processing methods with large
block sizes have a latency on the order of the FFT size. Other techniques are simply impossible in real time,
regardless of the processor speed. An example of such a technique is non-causal filtering. You can’t make
something laugh before you tickle it. Another example is playing a sound backwards. You have to wait for the
sound to finish before you can even start playing it. The latency is the length of the sound itself.

Do Analysis Tools Exist?

When computer and electronic music was first invented, both the technical literature and the popular
press were full of claims that now, finally, we could "make any sound." However, as composers started
exploring the space of parameter values, they discovered that most of that landscape produced sounds of
undistinguished character. For example, although all excerpts of white noise have different sample values, they
sounds very much the same. It is not enough to know in theory that any sound can be produced. You need
tools to derive the proper parameter values from a specification of a desired result. This process can be manual

| Simpésio Brasileiro de Computacio e Misica 59

or automated, as well as intuitive or analytical.

The question we ask of our synthesis technique, then, is whether well-understood analysis techniques
exist for deriving parameters from a real-world description? While all synthesis is certainly not directed at
jmitating real-world sounds, this class of sounds is of great interest to many composers. Coming up with the
right parameters to induce a technique to make the sound that in theory it is supposed to be able to make can be
tricky, to say the least.

It is generally easiest to come up with an analysis technique for a synthesis technique that is capable of
exactly reproducing any sound. The phase vocoder analysis/synthesis system is an example of such a
technique. It derives additive synthesis parameters from the samples of a recorded waveform, then reproduces
exactly those samples. We call this the "identity property."

Another popular analysis technique is linear prediction (LPC) (Markel and Grey 1976), which designs
a series of recursive filters for subsequent resynthesis. Like the phase vocoder, it starts from a recorded
waveform, but it can produce only an approximation of some input sounds. As an example, nasal vocal sounds
are not well-represented by linear prediction. And while there are other analysis techniques such as Prony’s
method (Prony 1795) that attempt to take this into account, all are approximations--none has the identity
property of the phase vocoder.

Yet, the identity property is only part of the picture. Unless mere data compression is the goal,
composers want not only to derive parameters from real-world examples, but also to modify these parameters to
create related but different sounds. One of the most basic transformations is to change the pitch of a sound. In
this area, LPC has a significant advantage over the phase vocoder. While transposing a phase vocoded note
also distorts its spectrum, LPC allows the pitch of the sound to be easily modified with no change to the spectral
envelope. To do the same thing to phase vocoded data requires first fitting a spectral envelope to the data, then
computing a new spectrum under that envelope--a much more computationally-intensive process. The reason
LPC is superior in this case is the fact that the fundamental frequency is decoupled from the spectrum, while
with the phase vocoder, the two are merged.

Samples of a waveform represent only one possible input to an analysis system, One can imagine
techniques for deriving synthesis parameters and algorithms from other sorts of descriptions, such as a spatial
representations of physical sound-producing mechanisms.

Conclusions

It’s safe to assume that all existing synthesis/processing techniques have some benefit, otherwise they
would have died out from lack of use. The plethora of hybrids now commonly in use shows that various
techniques can be combined to maximize strengths and minimize weaknesses from several areas. This
hybridization typically shows up after a technique has been around for some time and its characteristics have
been extensively explored. FM is a case in point. Even the DX7 featured multi-carrier FM, which is actually a
hybrid between FM and additive synthesis. This model turned out to be particularly useful for synthesis of
formant structure in the human voice (Chowning 1989.) The NeXT Music Kit (Smith, Jaffe and Boynton 1989)
includes a hybrid wavetable/FM synthesis in which the carrier and modulators can have arbitrary waveforms.,
Thus the ability to match a given periodic spectrum, which is provided by wavetable synthesis, is combined
with the dynamic quality of FM. A similar capability is provided by Waveshaping synthesis (Le Brun 1979.)

In the final analysis, the appropriateness of a given technique depends on the task at hand. To quote
the cellist who fruitlessly tries to teach loser Fielding Melish in the Woody Allen film "Take the Money and
Run":

"He has no conception of the instrument--he blows into it!"

The moral is to avoid wasting time blowing into a cello--get a bassoon. On the other hand, blowing into a cello
can occasionally have its own peculiar rewards and lead to discovery of unforeseen sound treasures.

References

(Chafe, 1989) Chris Chafe. "Simulating Performance on a Bowed Instrument.” Current

Directions in Computer Music, M. Mathews, ed., MIT Press, Cambridge, MA.
(Chowning, 1989) John Chowning. "Frequency Modulation Synthesis of the Singing Voice."

Some Current Directions in Computer Music Research., Cambridge MA, MIT Press, pp. 57-63.
(Cook, 1993) Perry Cook. Personal communications.

60 XIV Congresso da Sociedade Brasileira de Computacdo

(Cook, 1988) Perry Cook. "Implementation of Single Reed Instruments with Arbitrary Bore Shapes Using
Digital Waveguide Filters." CCRMA Dept. of Music Report No. STAN-M-50.

(Cook, 1990) Perry Cook. "Identification of Control Parameters in an Articulatory Vocal Tract Model, with
Applications to the Synthesis of Singing."” Ph. D. Dissertation, Elec. Eng. Dept., Stanford University.

(Chowning and Bristow, 1986) John Chowning and David Bristow. FM Theory and Applications. Y AMAHA
Music Foundation, Tokyo.

(Dolson, 1986) Mark Dolson. "The Phase Vocoder: A Tutorial.” Computer Music Journal 10(4):14-27.

(Freed, Rodet and Depalle, 1993) Adrian Freed, X. Rodet and P. Depalle. 1993. "Synthesis and control of
hundreds of sinusoidal partials on a desktop computer without custom hardware."
Proceedings of the International Conference on Signal Processing Applications and Technology.

(Gordon, 1985) John Gordon and J. O.Smith. 1985. "A Sine Generation Algorithm for VLSI Applications.”
Proceedings of the 1985 International Computer Music Conference.

(Jaffe, 1990) David Jaffe. "Efficient Dynamic Resource Management on Multiple DSPs, as
Implemented in the NeXT Music Kit." Proceedings of the 1990 International
Computer Music Conference, Glasgow, Scotland, Computer Music Association,
pp. 188-190.

(Jaffe and Smith, 1983) David Jaffe and Julius Smith. "Extensions of the Karplus-Strong Plucked String
Algorithm." Computer Music Journal 71(2):56-69. Reprinted in The Music Machine, Roads, C., ed.,
MIT Press, 1989.

(Karplus and Strong, 1983) Kevin Karplus and Alex Strong. "Digital Synthesis of Plucked String and Drum
Timbres." Computer Music Journal 7(2):43-55. Reprinted in The Music Machine, Roads, C., ed., MIT
Press, 1989.

(Le Brun, 1979) Marc LeBrun. "Digital Waveshaping Synthesis". Journal of the Audio Engineering
Society 18(2):250-266.

(Markel and Gray, 1976) J. D. Markel and A. H. Gray. Linear Prediction of Speech, Springer-Verlag, Berlin
Heidelberg. ‘

(Mathews, 1969) Max Mathews. The Technology of Computer Music. MIT Press, Cambridge MA.

(MclIntyre and Woodhouse. 1983) McIntyre and Woodhouse. "On the Oscillations of Musical Instruments,"
Journal of the Acoustical Society of America 63(3):816-8253.

(McNabb, 1981) Michael Mcnabb. "Dreamsong: the Composition." Computer Music Journal 5(4):36-53.

(ISO-IEC, 1991) International Standards Organization ISO-IEC. 1991. "Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up to About 1.5 Mbits/s." Motion
Picture Experts Group Audio Specification ISO-IEC JTC1/SC29/WG11,
Documents 3-11171, 3-11172.

(Portnoff, 1977) M.R. Portnoff. "Implementation of the Digital Phase Vocoder Using the Fast
Fourier Transform." IEEE Trans. on Acoustics, Speech, and Signal Processing
ASSP-25 pp. 235-238.

(Prony, 1795) R. Prony. "Essai experimental et Analytique sur les lois de la dilatabilit’e
des fluides "elastiques et sur celles de la force expansive de la vapeur de Ieau et
de la vapeur de P’alcool, ‘a diff’ erentes temperatures.” J. Ecole Polytech, Paris,
1:24-76.

(Rodet, 1984) Xavier Rodet. "Time Domain Formant Wave Function Synthesis." Computer Music
Journal 8(3):9-14. .

(Rodet and Depalle, 1992) Xavier Rodet and P. Depalle. "Spectral Envelopes and Inverse FFT Synthesis,"
Proceedings of the Audio Engineering Society, San Francisco.

(Schottstaedt, 1977) William Schottstaedt. "The Simulation of Natural Instrument Tones using Frequency
Modulation with a Complex Modulating Wave." Computer Music Journal
1(4):46-50.

(Serra and Smith, 1990) Xavier Serra and Julius O. Smith. "Spectral Modeling Synthesis: A Sound
Analysis/Synthesis System Based on a Deterministic plus Stochastic
Decomposition," Computer Music Journal 14(4):12-24.

(Smith, 1993) Julius O. Smith "Physical Modeling using Digital Waveguides." Computer Music Journal
16(4):74-87.

(Smith, 1991) Julis O. Smith. "Viewpoints on the History of Digital Synthesis." Proceedings of the
International Computer Music Conference, Montreal, pp. 1-10.

(Smith, Jaffe and Boynton, 1989) Julius Smith, David Jaffe and Lee Boynton. "Music System Architecture on
the NeXT Computer." Proceedings of the Audio Engineering Society Conference, Los Angeles.

(Smith and Cook, 1993) Julius O. Smith, Perry. R. Cook, "The Second-Order Waveguide Oscillator."
Proceedings of the International Computer Music Conference, San Jose, California, pp. 150-153.

| Simpésio Brasileiro de Computacio e Misica 61

Acknowledgements

We have attempted to present a balanced view of the synthesis techniques discussed. Nevertheless, our
bias toward physical modeling techniques can not be hidden. Also, we apologize to those researchers and
techniques not explicitly cited in this article--the choice was biased by the techniques with which the author has
the most familiarity, having implemented them himself or used them in musical compositions. Thanks to Julius
Smith for consultations and suggestions.

{ Simpésio Brasileiro de Computacdo e Misica 63

The Musi¢ Kit on a PC

DAVID A. JAFFE, JULIUS O. SMITH and NICK PORCARRO
david@jaffe.com, jos@ccrma.stanford.edu and nick@ ccrma.stanford.edu
Stanford University Office of Technology Licensing and
the Center for Computer Research in Music and Acoustics
Stanford University, Stanford, CA 94305

Abstract

We have recently ported the Music Kit to the Intel PC NEXTSTEP architecture, using
inexpensive DSP and MIDI cards. We describe the port, which is soon to be released as
Music Kit 5.0. We also introduce SynthBuilder, a graphic Music Kit instrument design
and performance system. Finally, we discuss future plans for the Music Kit architecture.

What is NEXTSTEP?

In 1989, NeXT Inc. introduced NEXTSTEP, an operating system environment based on an object-oriented
architecture. The promise to developers was an environment that forstered rapid application development with
fewer lines of code and higher levels of reusability than ever before. In addition NEXTSTEP is an
exceptionally convenient and powerful operating system for users. At that time, NEXTSTEP ran exclusively
on NeXT’s own hardware, which included a Motorolla DSP56001 signal processor, built-in 16-bit audio output,
telephone quality microphone input, and two RS232 serial ports suitable for MIDI. In addition, NEXTSTEP
included the Music Kit software package.

What is the Music Kit?

The Music Kit is an object-oriented software system for building music, sound, signal processing, and
MIDI applications running on the NEXTSTEP operating system. It has been used in such diverse commercial
applications as music sequencers, notation packages, computer games, and document processors. Professors
and students in academia have used the Music Kit in a host of areas, such as music performance, scientific
experiments, computer-aided instruction, and physical modeling (Jaffe, 1991). The Music Kit is the first to
unify the MIDI and Music V paradigms, thus combining interaction with generality. It was developed by
NeXT Computer, Inc. from 1986 to 1991 and has been supported since then by Stanford University and
developers such as Pinnacle Research, Inc. For further information, see (Jaffe and Boynton, 1989) and (Smith
et al,, 1989). The Music Kit is available free of charge, as described at the end of this paper.

Is There Life After NeXT Hardware?

In 1993, NeXT announced discontinuation of its hardware line, choosing instead to focus on its software
environment, which it has ported to a variety of architectures. The first port of NEXTSTEP was NS486, which
runs on Intel 486 and Pentium chips. Soon after came NEXTSTEP for Hewlett-Packard HP-RISC. NeXT has
recently announced ports to Sun and DEC architectures.

While we expect owners of NeXT hardware to continue to use the Music Kit on NeXT hardware, clearly
the future of the Music Kit is to be found on other hardware architectures. We have chosen the Intel platform as
our first port because of the many availability options and because of the price/performance advantages of the
PC. We are also considering other ports, as discussed below.

Hardware Architecture

64 XIV Congresso da Sociedade Brasileira de Computacio

The 5.0 release of the Music Kit features support for both Intel and NeXT hardware. The Intel support is
based on the strategy of providing DSP, sound I/O and MIDI via inexpensive external PC cards with which the
Music Kit communicates via software device drivers. For ease of porting and backward compatibility, we
chose DSP cards with hardware similar to that of the original NeXT. These cards also have features beyond
that of the oringinal NeXT hardware, such as more memory, faster processor speed and built-in sound
peripherals.

We currently support the Ariel PC56d (Ariel, 1994) and expect to soon support the ILink i56 (Ilink, 1994).
Both are based on the Motorolla DSP56001 and support a DSP serial port connection compatible with that of
the original NeXT hardware. This allows a variety of external peripherals to be used with the Music Kit,
including the Ariel ProPort (high-quality DAC/ADC), the Ariel DatPort and Stealth DAI2400 (digital I/O), the
Singular Solutions AD64x (high-quality ADC and digital I/O), etc.

Both the Ariel and ILink cards feature DSPs that run faster than the original NeXT hardware, allowing for
more processing or synthesis in real time. In addition, both include built-in CoDecs for DAC/ADC. The
following chart summarizes the features of the cards, in comparison with the NeXT hardware.

Hardware: NeXT Ariel PCS6d link 156
DSP fast static RAM: 8K,32Kor192Kwords 16 K or 64 K words 8 K words
Processor speed: 25 mhz. 27 mhz. 33 mhz.
CoDec: 8 bit mono 14 bit stereo 16 bit stereo
DSP can send IRQ: Yes (unused) No Yes

Both the Ariel and ILink cards are priced at under 500 US$ at the time of this writing.

For MIDI support, we use the standard MPU-401 architecture that is ubiquitous in the PC world. We
currently support the MusicQuest MIDI cards. Depending on which version of the card you buy, it may include
one or two MIDI inputs and one or two MIDI outputs.

Software Architecture

Portable File Formats

Intel x86 and Motorolla 68x00 processors differ in the order in which bytes are represented within words.
Intel orders the bytes from low to high ("little endian"), while. Motorolla orders them from high to low ("big
endian"). This is no problem for ASCII files such as the Music Kit .score file. However, binary files must be
carefully handled to allow users to freely move files between systems. The Music Kit uses the following bniary
files:

. «dsp—compiled DSP monitor files (load faster than lod files)
. .sound-—sound files

. .playscore—compiled score files (load faster than .score files)
. .midi—Standard MIDI files

N

To prevent confusion, these files are always stored in big-endian order. This means there is a slight cost in
reading a file on a little-endian system, since the bytes must be swapped. However, the swapping can be done
quite rapidly and the overhead is not significant.

Portable Applications

Just as users may move files between architectures, they may also move applications. It is desirable for a
given copy of a Music Kit application to work on both the NeXT and Intel machines. That way, a user can buy
an application for his NeXT hardware and, when he buys an Intel machine, simply copy the file to his new
computer.

To make this inter-operability possible, the Music Kit provides "fat libraries" and "fat applications.” These
are actually copies of the object code that includes both Intel and Motorolla machine code. The NEXTSTEP

| Simpdsio Brasileiro de Computacio e Misica 65

operating system then automatically chooses the appropriate code to execute for a given architecture.
Custom DSP Monitors

Another aspect of making it possible to move applications from one computer is for the application to be
self-contained—it should have no dependency on the Music Kit run-time library being installed on a given
machine. To make this possible, beginning in release 4.0, we have made it possible to include the DSP run-
time monitor in the application "wrapper”, i.e. the directory containing the application resources. This monitor,
with a Jod (ASCII) or .dsp (binary) file extension, then travels with the application as it is moved from one
computer to another.

In addition, the Music Kit supports variable DSP memory configurations. Each memory configuration has
its own DSP monitor file. Release 4.0 included monitors for the 32k and 8k configurations of the NeXT DSP,
as well as monitors for the hub and satellittes of the Ariel QuintProcessor (Ariel, 1990). (The QuintProcessor is
a five-DSP board for the NeXTcube, with the DSP arranged in a hub/satellite configuration. Each DSP has its
own bank of fast static RAM and serial ports, and the hub processor has a large pool of DRAM.)

Release 5.0 introduces new monitors for the PC56d and 156 cards, as well as for the 192k expansion
memory board for NeXT hardware. The Music Kit’s Orchestra object automatically chooses a monitor that is
optimal for a given machine. For examle, on NeXT hardware, it probes for the 192K memory expansion card
and, if such a card is found, uses the 192k monitor. If it finds no 192k card, it checks for a 32k card. Ifno 32k
card is found, the default 8k monitor is used. On Intel hardware, the monitor is chosen based on the kind of
driver that is installed.

The support for different monitors, coupled with the wrapper search convention, makes it possible (and
suggested) for an application to include a set of monitors that allows it to run optimally on a wide variety of
computers.

. {cating with the DSP

Communication with the DSP on Intel hardware is through a loadable device driver. The Music Kit
provides drivers for each of the cards it supports. The user can easily install the driver with the Configure
application, which allows I/O ports and interrupt requests to be set from a convenient graphic interface. The
Music Kit automatically searches for an installed driver of the type "DSP driver" and assumes there is a
matching card installed. The only concern of the user is that he avoid collissions between the IO ports and
interrupt requests of the various cards in his computer. This is a familiar headache for PC users. Recent "plug
and play" architectures are beginning to address it. We hope to make the process of installing cards easier as
the technology evolves.

The Music Kit’s Orchestra object supports any number of DSPs, which made it easy to port to the Ariel
QuintProcessor (Jaffe and Smith, 1992). On the Intel hardware, at the time of this writing, we support use of
one DSP card at a time. This is really only a limitation of the way in which the Music Kit senses the presence
or absence of the DSP drivers. It can be easily made more flexible if there is enough interest. We are hoping
that PC cards with multiple DSP56001s, similar to the QuintProcessor, will be made soon and we look forward
to supporting them. As an example of how we handle such a multi-DSP card, we examine briefly the Ariel
QuintProcessor support. Support for multiple cards would follow a similar pattern:

The primary Music Kit class that supports the QuintProcessor is the ArielQuintProcessor class, which
serves a dual purpose. First, it is a subclass of Orchestra that represents the hub DSP. As such, it can be sent
Orchestra messages to allocate UnitGenerators, SynthPatches, etc. But it also represents the QuintProcessor as
a whole and provides master control methods. The satellite DSPs are represented by instances of the subsidiary
class, ArielQPSat, which is aiso a subclass of Orchestra. Creating an instance of ArielQuintProcessor
automatically creates the associated ArielQPSat objects. A developer can chose to allocate DSP resources on a
particular DSP by sending the appropriate allocation messages to the appropriate ArielQPSat or
ArielQuintProcessor object.

Sound Input and Output

Our experience implementing sound output on the QuintProcessor paved the way for our approach to sound

66 XIV Congresso da Sociedade Brasileira de Computacio

output on the Intel hardware. On the QuintProcessor, we implemented direct sound output from the hub DS P
serial port, rather than doing sound output the way it was done on the original NeXT hardware, where sound
traveled first from the DSP to the main CPU (68040), then from the main CPU to the NeXT sound hardware,
This has a number of advantages, including virtually eliminating latencies due to sound buffering, simplifying
the software architecture, and reducing the load on the main CPU.

We took the same approach on the PC. The sound output, as well as the sound input, is done via the
NeXT-compatible DSP port of the DSP cards. Alternatively, the codecs on the cards themselves may be used.
In either case, the main CPU of the controlling computer has no responsibility with respect to sound output and
input—the card handles everything,

To use the DSP serial port, the programmer sends sends the Objective-C message
setSerialPortOutput:YES to the Orchestra object that represents the DSP. No change is necessary to the
SynthPatch or UnitGenerator code. Since all SynthPatches already have an output UnitGenerator (such as
OutlaUG), the DSP system simply routes the sound from this output to the serial port. To use the internal
codec of the card, the programmer sends setSerial PortOutput :NO.

The DSPSerialPortDevice class encapsulates the details about the external device that is plugged into the
DSP serial port. The Music Kit provides subclasses of DSPSerialPortDevice support various commercially-
available devices. For example, if you have an Ariel ProPort, you simply send the message
setSerialPortDevice: [[ArielProPort alloc] init] to the Orchestra object, which then defers to
the ArielProPort object to set up the external device. The ArielProPort object also takes care of sending the
appropriate commands to the DSP SCI port to set the sampling rate. The Music Kit's DSP system
automatically handles haif sampling rates. E.g. if the serial port device supports only 44100 and the sampling
rate of the music is 22050, the Music Kit will automatically up-sample the sound data. If a hardware designer
creates a new serial port device, he need only subclass DSPSeriatPortDevice and override a few methods—the
Music Kit then automatically supports the new device. One interesting new device is a quadraphonic interface,
developed by Fernando Lopez-Lezcano, Stephen A. Davis and Atau Tanaka at CCRMA (Lopez-Lezcano, 1993)
(Tanaka, 1991), which allows the Music Kit to generate four-channel sound.

The 4.0 Music Kit also added support for receiving 16-bit sound sent to the serial port from an external
ADC such as the AD64x or ProPort, or an external AES/EBU interface such as the Stealth DAT2400. This
sound input runs simultaneously with sound output, enabling incoming sound to be processed and sent back out
the serial port.

Sound input support is enabled in a manner similar to sound output——you merely send
setSerialSoundInput:YES to the Orchestra that represents the DSP. To create a sound-processing
SynthPatch, you provide a sound input source UnitGenerator. For example, to receive sound input from the left
channel, you include an In/aUG UnitGenerator object, just as you use an OutlaUG to send sound output to the
left channel. The output of In1aUG can then be connected to any other UnitGenerators to create a signal
processing network. Any number of In1aUGs may be instantiated; each gets a copy of the incoming sound so it
is easy to create parallel banks of processing modules.

Since the SSI input and output may be used simuitaneously, and since the SSI output path gets rid of buffer
latency as described above, a real-time signal processor with no noticeable latency can be implemented using
the Music Kit tools we have described.

MiDI

To support MIDI, we have written a device driver that provides the same functionality as the driver for
NeXT hardware, including time-stamping of input bytes, timed output of time-stamped bytes, suppot for
multiple MIDI cables and synchronization to incoming MIDI time code. The driver supports the standard
NeXT MIDI driver API, allowing it to be used by both Music Kit and non-Music Kit applications.

Performance Evaluation

The greater speed of the higher-end Pentium systems, as well as the higher-performance DSP cards allow
for an improvement in Music Kit efficiency. In particular, the Pentium speeds up such operations as inverse
Fourier transforms, which are used in the Music Kit to convert from Partials objects (frequency-domain
representation) to DSP wavetables (time-domain representation). Other operations that are improved include

| Simpésio Brasileiro de Computagdo e Misica 67

soundfile mixing using the mixsounds command-line utility, parsing of long scorefiles, etc.

On both the NeXT and Pentium hardware, the DSP’s "timed message queue" (TMQ), which controls the
precise timing of events on the DSP, is of a fixed size and sometimes fills up. However, the larger amount of
DSP static RAM on the PC56d allows for a larger timed message queue and thus minimizes the probability of
the TMQ filling, in turn leading to better behavior than the NeXT hardware had with its minimum DSP memory
configuration. The small size of the TMQ was enough of a problem on the NeXT hardware that we supported
extensive buffering of DSP commands in the driver for NeXT hardware. While the larger memory size of the
PC56d lessens the need for buffering on the main CPU, it remains to be seen whether it turns out to be
necessary to add this extra level of buffering.

Even with a larger TMQ, in extreme situations, the TMQ may fill up. If that occurs, it is important for the
driver to detect when room again becomes available in the TMQ. To accomplish this optimally, the DSP
should be able to interrupt the main CPU to tell it there is room for more commands Howeverz the PC56d card
is unable, to generate interrupts. The DSP driver for the PC56d card must poll the DSP periodically, to see
when room in the TMQ becomes available again. This is not only inefficient, it can lead to less-than-ideal '
response, since there may be some time between the time that room becomes available in the TMQ zmd.the time
that the driver wakes up and notices it’s time to send more data. Other cards, such as the i56, support interrupts
and should improve performance in this area.

SynthBuilder

One of the most exciting developments in the Music Kit project is a new graphic application for creating
Music Kit instruments, configuring them to respond to MIDI, and performing them. Synthesizer "patc.hes“A are
represented by networks consisting of digital signal processing elements called "unit generators” gMu.sm Kit
UnitGenerator objects) and MIDI event elements called "note filters” and "note generators” (Music Kit '
NoteFilter and Performer objects, respectively.) SynthBuilder is based on GraSP, a student project by Eric
Jordan, created at Princeton University in 1992, with advisory assistance by the author (Jaffe), who was a
visiting faculty. Since that time, it has been extensively developed by Nick Porcarro, in collaboration with the
authors.)

The graphical interface enables construction of complex patches without having to »Yrite a single line.ot
code, and the underlying Music Kit software provides support for real-time DSP synthesis and MIDI. This .
means there is no "compute/then listen” cycle to slow down the process of developing a patch: It can be trle.d
out immediately on a MIDI keyboard, and unit-generator and note-filter parameters can be adjusted in real time
while a note is still sounding. '

Sixteen bit stereo sound is synthesized immediately on the NeXT’s built-in DSP56001 signalAprocessmg
chip, and can be controlled from the user interface with software-simulated or physical MIDI <.iev1ces. In
addition to synthesis, the system supports configurations for sound processing via the DSP serial port as well as
for sound output to DACs and other digital /O devices. o .

MIDI control signals can be mapped to unit generator object control metho.ds, permitting high-level control
of patch parameters. For example, a MIDI key number can be readily mapped into frequency, and then mapped
into a delay line length via a graphically constructed lookup table. A single MIDI event can be fed to (Qr
through) multiple note filters, each of which can modify the event stream and/or control one or more unit-
generator parameters. ' ')

Polyphony is handled in SynthBuilder by graphically specifying a voice allocation scheme. OpnAonally, a
Music Kit SynthPatch can be generated and used in another application. Other types of code generation are
possible, such as generic C code, or assembly code for another digital signal processor. .

Dynamically loadable custom "inspectors” (user interfaces) can be created for patch eler\nlex.\ts. Dynamic
loading promotes easy distribution and sharing of inspector modules, and promotes a fa§t, efficient development
cycle. The process of creating a custom inspector is facilitated by a code generator, Whl(.:h te'xkes aDSP

assembly macro and a signal flow/parameter list specification as input, and ouputs working interface code
which can then be customized.)]

As of this writing, SynthBuilder had more than 50 graphical custom inspectors, including an envelope
editor, digital filter responses editors, and a MIDI event lookup table. .) ')

SynthBuilder is being used by researchers at the CCRMA to explore new synthesis techniques. It is now in

68 XIV Congresso da Sociedade Brasileira de Computacio

the alpha release stage on both NeXT 68040 based systems and Pentium systems.
Beyond the 56001

Recently-announced new versions in the DSP5600x series promise much greater compute power.
Additjonally, there are plans to modify SynthBuilder to generate code for a variety of other DSP chips. In
addition, ss main CPU speeds continue to increase at their current rate, eventually it is likely that we will be)
able to run the Music Kit's synthesis and sound processing code on the main CPU itself, rather thanona DSP,
using UnitGenerators written entirely in C. The object-oriented nature of the Music Kit makes such a change
managable because all references to the DSP are localized in the Orchestra, UnitGenerator and SynthData
classes. We have made a prototype of the low-level portion of such a system, with all current Music Kit DSP
unit generators translated into C and have been able to use it to do some simple interactive real-time synthesis
on 2 Pentium-based computer. One of the advantages of doing this excercise is that it enabled a comparison
between the Pentium and DSP-based solutions. Currently, the DSP came out many times faster and has the
advantage of being dedicated exclusively to sound production. Nevertheless, many more hours have gone into
optimizing the DSP implementation than the Pentium implementation. If the Pentium unit generators were
written in assembly language, they would probably be more efficient. We plan to watch closely the
developments in the area of both DSPs and RISC chips and plan our migration path appropriately.

Availability

The Music Kit is available via fip from cerma-ftp.stanford.edu (email: musickit@ccrma.stanford.edu.) It
is also available on CD ROM as part of the Big Green CD ROM at P.O. Box 471645, San Francisco, CA 94147
(email: disc@skylee.org, fax: 415 474 7896, phone: 415 474 7803.) At the time of this writing, the CD ROM
contains version 4.0, which runs only on NeXT hardware. To subscribe to a Music Kit news group, send to
mkdist-request@ccrma.stanford.edu.

References

(Ariel, 1994) Ariel Corp, 433 River Road, Highland Park, NJ 08904. (201) 249-2900, (201) 249-2123 fax.

(Ariel, 1990) Ariel Corp. Ariel QuintProcessor Installation, Technical and Programming Manual. Ariel Corp.

(Ilink, 1994) i*link. Kommunikationssysteme GmbH, Nollendorfstrasse 11-12, 10777, Berlin, Germany.
phone: 49 30 - 216 20 48, fax: 49 30 - 215 82 74, mail: info@ilink.de.

(Taffe, 1993) David A. Jaffe and Julius O. Smith. Real Time Sound Processing & Synthesis on Multiple DSPs
Using the Music Kit and the Ariel QuintProcessor. Proceedings of the 1993 International Computer Music
Conference, Tokyo, Japan.,

(Yaffe, 1990) David A. Jaffe. Efficient Dynamic Resource Management on Multiple DSPs, as Implemented in
the NeXT Music Kit. Proceedings of the 1990 International Computer Music Conference, Glasgow,
Scotland,Computer Music Assoc., pp. 188-190.

(Jaffe, 1991) David A. Jaffe. Musical and Extra-Musical Applications of the NeXT Music Kit. Proceedings of
the 1991 International Computer Music Conference, Montreal, Canada, Computer Music Assoc.,
pp. 521-524.

(Jaffe, 1989) David A. Jaffe. An Overview of the NeXT Music Kit. Proceedings of the 1989 International
Computer Music Conference, Columbus, Ohio, Computer Music Assoc., pp. 135-138.

(Jaffe and Boynton, 1989) David A. Jaffe and Lee Boynton. An Overview of the Sound and Music Kits for - the
NeXT Computer. Computer Music Journal, MIT Press, 14(2):48-55, 1989. Reprinted in book form in The
Well-Tempered Object, ed. Stephen Pope, 1991, MIT Press.

(Jaffe and Smith, 1983) David A. Jaffe and Julius O. Smith. Extensions of the Karplus-Strong
Plucked-String Algorithm, D. Jaffe and J. O. Smith. 1983. Computer Music Journal, 7(2):56-69.
Reprinted in The Music Machine, ed. Curtis Roads, 1989, MIT Press, pp. 481-494,

(Lopez-Lezcano, 1993) F. Lopez-Lezcano. A four channel dynamic sound location system. Proceedings of
the 1993 Japan Music and Computer Society.

(McNabb, 1990) Michael McNabb. Ensemble, An Extensible Real-Time Performance Environment. Proc.
89th Audio Engineering Society Convention, Los Angeles, CA, 1990,

| Simpdsio Brasileiro de Computagio e Misica 69

(Smith et al., 1989) Julius O. Smith, David A. Jaffe and Lee Boynton. Music System Architecture on the
NeXT Computer. Proceedings of the 1989 Audio Engineering Society Conference, L.A., CA.
(Tanaka, 1991) Atau Tanaka. Implementing Quadraphonic Audio on the NeXT, Proceedings of
the 1991 International Computer Music Conference, Montreal, Canada, Computer Music Assoc.

Acknowledgements
Work on SynthBuilder and the corresponding Music Kit support was provided by the Stanford Office of

Technology Licensing. Support for the Music Kit was provided by the Stanford Center for Computer Research
in Music and Acoustics.

Sistemas de Notacao Musical

| Simp6sio Brasileiro de Computacio e Misica 73

NotaCor - Impressio de Partituras em Cores

ALEX DE OLIVEIRA MEIRELES
Laboratério de Processamento Espectral do Departamento de Ciéncia da Computagdo
Universidade de Brasilia - Brasilia DF, Brasil, 70910-900

Resumo

Partituras musicais sfo estruturas de dados com certo grau de complexidade que
podem ser analisadas ¢ executadas por misicos através de algoritmos advindos da
teoria/pratica musical. Nem sempre os simbolos que compdem a partitura
conseguem especificar com precisfo e completude as informagSes necessarias a sua
execugfo. Isto exige do muisico, além de cuidadoso estudo prévio da partitura,
conhecimentos extras sobre a interpretagfo e estilo da pega que néo se encontram
escritas. A utilizagGo de cores na impressdo das partituras permite enriquecer a
semdntica dos seus simbolos, a0 mesmo tempo em que simplifica a notago e
permite uma apresentagio mais limpa das informag@es.

Introdugio

Entre os problemas de formatagdo de documentos, a formatagfio de partituras musicais é um dos mais
complexos ¢ menos estudados. Mesmo na atualidade, a impressfio de partituras musicais é feita na maioria dos
casos, pelos mesmos métodos utilizados no século passado. Mesmo em centros de pesquisa de ponta da area
musical, recorre-se a métodos ultrapassados.

O Laboratério de Processamento Espectral (LPE), do Departamento de Ciéncia da Computagio,
desenvolve diversas pesquisas ¢ projefos na 4rea de Inteligéncia Artificial envolvendo Computagiio Sénica e
Computagio Grafica. Diversos produtos foram gerados por estas pesquisas e sio amplamente utilizados pela
equipe do LPE nos seus estudos. Deste modo se desenvolvem as ferramentas que dio continuidade ao trabalho
¢ abrem novas possibilidades de pesquisa. O presente trabatho pretende ser também uma ferramenta pratica
que possa ser de utilidade para as futuras pesquisas a serem desenvolvidas pela equipe, € que facilite o curso
das atividades atualmente conduzidas.

O LPE tem entre suas pesquisas a geragdo de pegas musicais por computadores, ou seja, o laboratério
produz misicas que sdo criadas através de composicdo algoritmica. Estas pegas podem ser facilmente
executadas pelo préprio computador que trata apenas das notas e seus respectivos pardmetros, mas para um
observador humano, a leitura/interpretagdo destas pegas ¢ muito dificil pois as maquinas apresentam como
saida apenas uma seqiiéncia de dados que envotvem freqiiéncia, duragfio, dinfimica e outras mais que em geral
sfo apenas nimeros. Ora, para um misico uma seqiiéncia de nimeros dificilmente representa misica, por isso
se faz necessaria uma interface mais natural entre maquina e homem no que se refere A saida visual das pegas
musicais geradas. Portanto, este ¢ um dos objetivos do presente projeto: gerar uma saida impressa das musicas
geradas no LPE em forma de partituras musicais para que possam ser lidas e executadas com mais propriedade
por seres humanos.

Além da geragfio automatica de partituras musicais pelo computador, busca-se no LPE pesquisar campos
pouco explorados, tal como a geragdo de partituras em cores. Porém, nfo se quer apenas partituras contendo
cores, mas busca-se novas formas de expressdo e notago musical, pois neste caso os cromatismos nfo serfo
mero adorno mas expressardo a dindmica da musica e também a possibilidade de percepgdo da evolugio
melddica segundo um mapeamento som-tuz a ser descrito posteriormente. Isto permititd uma apresentagio
mais compacta, limpa ¢ expressiva das musicas, quando comparadas as representagdes tradicionais.

XIV Congresso da Sociedade Brasileira de Computacio

Abordagem

As pecas musicais geradas de forma algoritmica sdo apresentadas pelo computador na forma de cartas
espectrais chamadas CAR e também por cartas CES, que sfo cartas CAR com instrumentagio sinfonica (Gioia
1994). Estas contém os parimetros necessdrios para a descri¢do das misicas, tais como freqiiéncia, duragdo,
dindmica ¢ tempo inicial. O sistema a ser descrito 1€ estas cartas ¢ a partir delas gera um arquivo em
linguagem PostScript. Este arquivo PostScript definird as partituras ja4 em cores, que poderdo ser entdo
impressas num dispositivo adequado ou observadas na tela com o auxilio de um sistema de visualizagio
PostScript.

Conceitos Aplicados ao Sistema NotaCor

Composiciio Algoritmica

Quando se diz que uma das areas da computagio sbnica ¢ a sintese de sons, isto ndo se refere somente a
produgdo de timbres e a manipulagdo digital de sons. O estudo da coordenagdo de sons também & objeto de
estudo desta drea e existem diversos tipos de sistemas que auxiliam neste objetivo. Os modos de se produzir
musica podem variar mas o resultado pretendido ¢ o mesmo, que é composigio algoritmica. O computador
pode assumir diversos papéis, desde um simples auxiliar funcionando como um editor ou um verificador, pode
auxiliar na busca de caminhos a serem seguidos pelo compositor, ou pode tomar o controle ap6és uma
inicializagdo ou mesmo gerar praticamente sozinho as pegas.

Impressdo de Partitaras Musicais

Este ¢ o tema primordial deste trabalho. Ao se abordar este problema, deve-se sempre ter em mente 2
busca da qualidade da impressdo ¢ o respeito 3s regras e notagdes musicais, pois de outro modo o resultado ndo
seria satisfatorio em termos profissionais, ou no se poderia utiliza-lo por ndo atender as exigéncias da escrita
musical.

Para se buscar qualidade, deve-se comsiderar o melthor resultado possivel a ser obtido. Ndo podemos
resolver o problema apenas para um dispositivo de baixa resolugdo (qualidade) pois quando estiver disponivel
um dispositivo melhor, o resultado serd no méaximo igual ao do dispositivo para o qual foi projetado. Ou seja,
uma boa impressora nfo pode “melhorar” o resultado se este foi originalmente definido para um resultado de
pior resolugdo. Neste sentido adotou-se que a saida do sistema seria na forma de arquivos PostScript. O
PostScript ¢ uma linguagem de impressdo, ou seja, destina-se a impressoras ¢ possui comandos para a
definigdo dos elementos de pagina, tais como, letras, tragos e formas geomeétricas. Além disso, o PostScript é
independente de dispositivo, ou scja, o resultado, se nele definido serd tanto melhor quanto maior for a
resolugdo do dispositivo de saida desde que este suporte a linguagem. Deste modo tem-se o melhor resultado
possivel, o que concorda com os objetivos.

Outro problema envolvendo a impressio de partituras musicais ¢ a questdo dos simbolos, ou seja, de
como se desenhar notas, claves ¢ outros elementos musicais. A qualidade & importante neste ponto, ¢ se mal
desenhados, os simbolos podem se tornar até ilegiveis, o que invalidaria o trabalho por ndo permitir uma boa
leitura da pega. A solugdo encontrada e adotada foi a utilizagdo de uma fonte musical PostScript (conjunto de
caracteres definidos para misica). A sua qualidade atende ds nossas necessidades e por ser uma fonte
PostScript, € totalmente compative! com o procedimento adotado até agora.

Um problema particularmente interesante ¢ a criagfio do algoritmo de distribuigio dos simbolos musicais
na partitura. Ele ¢ muito semethante ao problema de formatagdo de texto mas com regras mais particulares a
notagio musical. Resolvidos estes problemas, tem-se agora o problema de notagdo, pois a musica possui regras
no que se refere a colocagdo de scus simbolos em uma partitura, e para que as partituras geradas pelo sistema
tenham utilidade pratica, elas devem ser fi¢is 4 notagfio musical.

Som e Cor

Para o embasamento do trabalho ¢ necessario reportarmo-nos ao artigo “Sintese de Imagens com Pedagos
de Tempo” de Aluizio Arcela. Ele demonstra que a quantizagfo do tempo ¢ da luz sdo fendmenos com uma
correlagfio matematica e perceptual. De maneira simplificada seu artigo nos permite dizer que as 10 (dez)

| Simpdsio Brasileiro de Computacio e Misica 75

oitavas audiveis de som podem ser quantizadas em uma oitava de luz visivel. Deste modo, a freqiiéncia de uma
nota dentro de uma oitava é mapeada para o matiz; a oitava em que s¢ encontra a nota (de 1 a 10 oitavas) é
mapeada para a saturago; € a amplitude do som & mapeado para o brilho.

Partituras em cores

O sistema habitual de notagdo musical esta sempre em continua modificagdo & medida que a misica se
desenvolve. Com o desenvolvimento da tecnologia musical, a notagfo foi necessariamente modificada. Novos
aprimoramentos nessa notagdo sdo feitos 4 medida em que novas formas surgem. Mas ¢ também possivel
pensarmos que modificagdes realizadas na notagdo atual, mesmo sem o acréscimo nas formas musicais,
possam Vir a trazer contribuiBes 4 misica. A sintaxe atual nfo tem toda a capacidade de trazer em si a
seméntica necessaria & execugdo de uma certa pega. Percebe-se também que esta sintaxe ndo facilita muito a
sua interpretacdo dada a disposigio de seus elementos (Figura 1). Tenta-se mapear um clemento de vérias

dimensdes em apenas duas dimensdes.

m
i
Ii:
]
i
pEroker|
U3
A

Figura 1: Partitura na forma atual de codificagfio.

Neste trabatho, estuda-se uma modificagio na notagdo atual de forma a simplifica-la sem perda de
conteddo seméntico. Essa simplificagdo pode vir a petmitir a aquisigio de outros conteiidos pela introdugdo de
novos elementos sintdticos. De outro modo, poder-se-ia pelo menos ter simplificado a sintaxe musical. Como
foi visto, & possivel fazer um mapeamento das oitavas ¢ intensidades (frequiéncias ¢ intensidades, o som menos
sua duragio) em matizes, saturagBes ¢ brilhos de cores. Neste trabatho aplica-se 0 mapeamento na codificagio
de partituras. Em lugar da representagdo da dimensdo de intensidades (a dindmica, figura 2), i. €., ppp, mp, ff,
etc, utiliza-se a saturagfio das cores para a codificaciio da oitava do som. Além disso, tem-se uma enfatizagdo
das alturas das notas pelo matiz utilizado. A partir dos parimetros de freqiiéncia e intensidade calcula-se o
matiz, a saturagdo e o brilho de cada nota. Ao imprimir-se a nota, ela ¢ pintada.

Figura 2: Exemplos de simbolos de dinimica.

76 XIV Congresso da Sociedade Brasileira de Computacio | Simpésio Brasileiro de Computacio e Mdsica 77

Recursos de Hardware e Software Algoritmo Bésico
— Inicializagdo de todos os objetos da interface;
— Entrada de nome de arquivo CAR ou CES;
-— Parametrizagdo do ntimero de compassos, linhas por pagina, sistemas por pagina,
— Leitura do objetos musicais e conversfio de freqiiéncias em cores;
— Transformagio de objetos musicais em listas de notas em memoria;
— Determina-se a distribuigfo das notas em compassos da partitura;
— Determina-se a unifo ou ndo das notas em termos de grafia musical;
— Ajusta-se o espagamento horizontal das notas;
— Ajusta-se o espagamento vertical das notas;
— Gera-se saida PostScript em cores (figura 4).

Neste projeto o sistema serd desenvolvido tendo como plataforma méquinas SUN utilizando o sistema
Unix. Para visualizagfo dos resultados da utilizagio do sistema serfio necessarios video de média/alta resolugdo
¢/ou impressora que aceite entrada PostScript. Dado que o projeto trabalha com saida impressa em cores serd
necessdria uma impressora colorida. O sistema serd implementado em linguagem C e em linguagem
PostScript. Deve-se atentar para a utilizagdo de um interpretador Postscript nivel II. Serdo usados o
compilador C da Sun (SUN Systems), o software DevGuide (SUN Systems) para desenvolvimento da interface
¢ o compilador CPS para a geragdo de codigo C a partir de rotinas PostScript (Adobe Systems). No caso do
médulo de interface gréafica serdo utilizadas bibliotecas graficas adequadas a cada plataforma (Xview para
SUN da SUN Systems).

Estrutura do Sistema Exemplo de arquivo CAR
(VAL 0 60 10000 0.1041666 1 1 720)
O sistema serd organizado em 4 médulos logicos inclusos no mesmo codigo executdvel. A execuglio serd (INS 8011

coordenada pela interface do sistema. As entradas do sistema sedo arquivos tipo CAR ou CES e a configuragfio
feita na interface. A saida serd um arquivo EPS que conter4 as informagdes de impressio da partitura. A seguir
uma descrigdo das fungGes genéricas de cada modulo (figura 3).

(1210.1316 (0 0) (4379 180) (2911 360) (0 720)) 0)
(0.3016 211.1962 ((0 0) (2049 180) (-9339 360) (0 720)) 0)
(1.6969 211.1803 ((0 0) (3640 180) (0 720)) 0)

(0.7468 328.3099 ((0 0) (-6315 180) (0 720)) 0)

)

(INS 80 12

(1 264.5851 ((0 0) (5067 180) (10339 360) (0 720) 1)
(2.1143 274.7800 ((0 0) (772 180) (6044 360) (0 720)) 1)
(0.2324 271.4896 ((0 0) (-1263 180) (0 720)) 1)

(0.9991 272.4606 ((0 0) (-3817 180) (0 720) 1)

)

(INS 80 I3

(1264.5851 ((0 0) (5067 180) (10339 360) (0 720)) 1)
(2.1143 274.7800 ((0 0) (772 180) (6044 360) (0 720)) 1)
(0.2324 271.4896 ((0 0) (-1263 180) (0 720)) 1)

(0.9991 272.4606 ((0 0) (3817 180) (0 720)) 1)

NotaCor

Inicializa¢des Interface Executor Copista

Figura 3: Esquema grafico do sistema NotaCor.

)

(INS 80 14

(1264.5851 ((0 0) (5067 180) (10339 360) (0 720)) 1)
(2.1143 274.7800 ((0-0) (772 180) (6044 360) (0 720)) 1)
(0.2324 271.4896 ((0 0) (-1263 180) (0 720) 1)

(0.9991 272.4606 ((0 0) (-3817 180) (0 720)) 1)

Interface :)
E responsavel pelo controle de execugio do sistema. Permite a selegdo dos arquivos de entrada e saida. (EXE 0 576)
Tipo de entrada (Car ou CES); inicio da execugdo; chamada de impressdo, configuragdes tais como ai o 16 47.7502 1.0850)
especificages de pagina (tamanho de papel, nimero de instrumentos, etc), diretérios default, etc. Este modulo @ o 16 74,9939 1.0850)
controla as chamadas aos outros médulos do sistema. aa o 9 239.2969 0.5865)
4 o 9 769.5821 0.5865)
Inicializacbes a3 9 3 153.0344 0.4604)
E responsavel pela criagdo dos objetos da interface e inicializagio de variaveis. az o9 3 487.4481 0.4604)
ar 12 9 237.7306 0.5494)
Executor 14 12 9 768.7121 0.5494)
E responsavel pela leitura e interpretagiio dos arquivos de entrada, pelo tratamento dos objetos e pelo I3 16 16 14.9417 1.0748)
espagamento dos objetos musicais. I3 12 9 237.7306 0.5494)
4 12 9 768.7121 0.5494)
Copista I3 16 16 14,9417 1.0748)
E responsavel pela compilagdo dos objetos musicais e seus respectivos espacamentos em objetos graficos (STP)

na linguagem PostScript. (FIM)

| Simpésio Brasileiro de Computacio e Musica 79

XIV Congresso da Sociedade Brasileira de Computacio

78

Projeto de Interface do NotaCor

— Representacfio Angular para Notacio Musical
& Natacar-dsicar
EDILSON EULALIO CABRAL
Departamento de Artes
CH - UFPB

Av. Aprigio Veloso 882 - 58109-970
Campina Grande - Paratba - Brasil
E-mail : eulalio@dee.ufpb.br
Telefone: 333-1000 R;135

Resumo

A proposta deste trabalho € mostrar uma forma de representagio musical cujo
objetivo seja facilitar a percepgio visual dos intervalos musicais. Isso nos levard
além, uma vez que iremos entender de modo diferente a forma como devemos
pensar as notas musicais, pois passaremos a raciocinar em termos de dngulos,
aberturas ¢ distanciamentos entre elas, etc...

Para cada pota serd atribuido apenas um simbolo, inclusive para as
enarmdnicas, como por exemplo o déjeord,.

Enquanto na notagdo convencional utiliza-se, para o Piano, duas claves (a de Sol e
a de F4) e para o Violdo somente a clave de Sol, neste sistema a representagio para
qualquer instrumento podera ser feita de uma tinica maneira.

Figura 4: Interface NotaCor.

Referéncias

Adobe Systems, PostScript Language Reference Manual, Addison-Wesley, USA, 1990. 1. Introdugio

Ha vérias maneiras de se representar as notas musicais usando-se pentagrama, cifra, tablatura, o nome
(ds, ¢, etc.), etc... Geralmente adotamos a que mais satisfaz aos nossos objetivos, ou seja, quem deseja tocar um
instrumento apenas para se¢ acompanhar, pode achar ser suficiente apenas aprender os acordes através de seu
desenho numa tablatura em vez de aprender sua codificagio na forma de cifras. Qualquer sisterna de notagdo ¢
deficiente para representar inteiramente todas as formas de expressdo musical. Isso porque quanto mais elementos
forem utilizados, maior niimero de simbolos serdo necessdrios para representar 0 que se deseja tornando-se,
muitas vezes, impraticdvel ¢ confusa sua aplicago de forma integral.

Cada sistema de notagfio tem, portanto, methor aplicabilidade para determinados casos. No nosso, ¢
sisterna que passamos a descrever se presta melhor para a percepgdo visual de intervalos musicais o que nos
ajudard bastante em termos de analise harmdnica ¢ melédica.

Ames, Charles, Automated Composition in Retrospect: 1956-1 986, Journal of the International Society for the
Arts, Sciences and Technology, USA, 1987.

Arcela, Aluizio, Sintese de Imagens com Pedagos de T empo, Publicacdo Interna, LPE,CIC/UnB, Brasilia,
1990.

Beauchamp, James, ¢ outros, Music by Computers, John Wiley and Sons Inc, New York, 1969.
Gioia, Osman G., Orquestrador MIDI Sinfénico, na corrente publicagdo.

Gourlay, John S., 4 Language for Music Printing, Communications of the ACM, vol. 29, #5, pp 388-401,

USA, maio 1986. 2. O Sistema
Olson, Harty F., Music, Physics and Engineering, Dover Publications, Inc, New York, 1967. Como sabemos, as notas musicais utilizadas comumente no sistema musical do Ocidente (doze semitons,
escala temperada), guardam uma relagdo que pode ser expressa apropriadamente de forma geométrica (S6, 1961).

A Representacdo Angular para Notagfo Musical é uma maneira de representar as notas musicais de tal
modo que cada nota seja escrita em um determinado 4ngulo onde o espagamento de 30 graus, entre as linhas,
representa uma relagio de meio tom,

Basicamente este sistema ¢ representado por uma espiral cortada por linhas, onde pequenos circulos,
representativos das notas, serdo colocados em locais determinados pelas intercepgdes das linhas com a espiral. A
altura das notas sdo determinadas pela proximidade ou afastamento destes pontos em relagdo ao centro da espiral
onde as mais agudas sfo aquelas mais préximas daquele centro. Ver ilustragfio seguinte:

Producao Interna ao Laboratorio de Processamento Espectral do Departamento de Ciéncia da Computagio,
UnB, 1989-1993.

Smith, Leland, Editing and Printing - Music by Computers, Journal of Music Theory, vol. 17, vol. 2, pp 292~
307, USA, 1973.

XIV Congresso da Sociedade Brasileira de Computacio

80

-8 3

a-
a+

3. O Software

Sua fungfio ¢ a demonstragiio deste sistema com a utilizagdo de uma interface gréfica que poderia ser
utilizada para vérios outros tipos de programa. Com esta interface podemos exibir simultdnea ¢ integralmente,
inclusive em tempo real, todas as vozes possiveis em um mesmo canal e, dependendo de uma melhor
implementagdo, também em varios canais.

Aplicando este sistema, o sofiware desenvolvido consta de duas partes; A parte de Edigdo e a parte de
Execugdo de arquivos MIDI onde apenas o formato padrdo serd utilizado.

No Editor utilizamos as figuras das notas representadas conforme a seguinte ilustragio:

O = Semibreve
© = Minima
Seminima
Colcheia

Semicolcheia

Fusa

NI VO]

Semifusa

[Simpsio Brasileiro de Computacio e Miisica

81

Na parte de Execugdo nfo utilizamos as figuras das notas representadas na parte de Edigfo, apcn.as

i,equenos circulos simples :

O

Obs. - A utilizagfo de figuras com um formato mais complexo, como no Editor, s6 se justifica caso o computador
tenha velocidade suficiente para exibi-las de forma integral e sem interferir no desempenho do programa.

. Exemp]o:

4. Conclusio

; Pelo exposto, pode-se dizer que isso € apenas o comego para o desenvolvimento de um sistema maior que
_abrangeria de forma mais completa o fendmeno musical (incluindo a representagdo grifica da dindmica, timbres,

efc.).

Referéncias

Hugo de Andrade 86 (1961). Ciéncia e Milsica - Fisica dos sons musicais.

| Simpdsio Brasileiro de Computacio e Misica 83

POSITIONAL RHYTHMIC NOTATION: AN IMPLICATION FOR A POSITIONAL .
THEORY OF RHYTHM.

MORAES, M. R.
Departamento de Formagfio Artistica
Universidade Federal do Espirito Santo
Av. Fernando Ferrari S/N,
Vitoria, ES - CEP 29060 - Brasil
E-mail: mmoraes@npdl ufes.br

Abstract

Computer modelling of music, and for that matter any applications in musie, reflects
a musical theory, which is in itself & model Thus, if there is any inadequacy in the
theory, a computer model that successfully embodies that theory will also include
that inadequacy. One of such inadequacies is the assumption that duration is a
concept central to rhythm. We claim, instead, that ewnset positiens play a central
role. Among the many potential consequences of such a claim we maintain that a
purely rhythmic notation must reflect different positions within a tree hierarchy,
rather than durations. Bearing this in mind, we devised a notation such that only
cither presence or absence of the onset of a sound on a specific locus are
represented. Some issues related to the way a user thinks and acts when inputting
musical data into the computer vis-a-vis positional notation, and the positional
concept itself, are discussed. The impact of positional notation (and the positional
concepf) on music teaching begs special attention.

Brief Remarks on Interdisciplinarity

The interdisciplinary nature of Computer Music - computer modelling being one of its sub-areas ~ is one of
its many appealing aspects. Moreover, interdisciplinarity per se is often, and most of the times rightfully,
welcome in the academic world. Nevertheless, with the proviso that we strongly support interdisciplinary work,
we will point out some problematic issues related to interdisciplinarity which constitute the more general and, in a
way, more theoretical concerns that motivate the specific questions to be addressed below.

The first precaution one must fake in interdisciplinary work concerns terminology. Technical terms, as we
know, must have their meanings as precisely defined as possible. Assuming, on the one hand, that this is not &
major problem (and sometimes it is) within one single, self-contsined field of study, on the other hand, not few
problematic situations arise when it comes to relating two or more disciplines, each of them built upon its own set
of fundamental coneepts, its own premisses and axioms. This situation requires work akin to that of a translation
which will establish that one concept is attached to the term %' belonging to a given discipline ‘A’ and thet the
same (or approximate) concept is represented by 'y', that belongs to another discipline B'. An interesting, and
potentially dangerous, situation occurs when's' (the signifier, as borrowed from semiotics) can be found both in
‘Al and in 'B'. More often than we would like to admit, we tend to assign the same meaning to %' in A’ and %' in
B, and this, if their correct meanings are not the same, and if the concepts are of fundamental importance to the
theories they belong to, can have disastrous consequences. (Of course we are much more aware of the same sort
of situation when two different natural languages are involved). This problem, however, is mentioned here as a,
subsidiary issue as regards our main subject (see Grillmer 1986).

The other precaution we must take refers to the status of the disciplines or the theories involved. True
interdisciplinarity must be established between theories bearing the same status. Most fields of study, with their
corresponding theories, have a systematic character, due to rigorous and continuing investigation. These could
be called true theories, theories stricto sensu, or simply theories. There are, however, some cases in which 2
collection of terms and rules related to a certain area of knowledge and activity is unduly known either as a

84 XIV Congresso da Sociedade Brasileira de Computacio

theory or as a science. Typically, this situation ocours along with a process we might call linguistic
naturalization, i.c., those constitutive terms and concepts, which could once have been strictly defined and
interrelated, go through a loss in precision proportional to their ever increasing usage as everyday natural
language. But, in spite of such notwralization - due among other causes to a lack of continuing investigation -
tradition keeps ascribing this ‘theory' the status of Theory. Henece, if there happens that a systematic discipline
(i.e. theory proper) gets involved with a discipline of this second type (ie. & pseudo-theory), the resulting
interdisciplinary field is bound to lose some of its consistency. In other words, even when we are attentive
enough to method and logic in our procedures, if we inadvertently accept the pseudo-theory as an adequate
rendering or model of the object or problem under investigation, we might not only weaken our interdisciplinary
field (from a formal point of view), but also bring into it some descriptive inadequacy, i.e., we may distort the
image of the object, since the 'natural truths' embodied by the terms of a pseudo-theory tend to hide their lack of
strict denotative relation to whatever referent in the phenomenal world (see Moraes 1991).

Music Theory

Mausic theory is a typical instance of what we have called pseudo-theory. Many authors, in particular those
engaged in interdisciplinary work, corroborate this assertion. Lindblom (1976) states that “traditionally, music
theory works with impressionistic, non formalizing methods”. Hackman (1975) says: "it took far 100 long for me
to realize that the methods of music analysis hod to bear at least a superficial resemblance to other methods of

holarly and tific inguiry”. We shall also mention Babbit (1975) (quoted by Hackman): "If scientific

thod is not extensible to music theory, then music theory is not theory in any sense of the word", and
Jackendoff & Lerdahl (1983): "It (music theory) severs questions of ort from deeper rational inguiry; it treais
rmiusic as though it had nothing to do with other aspect of the world".

Of course, much has been done in the last decade in the way of filling this gap. Work done by psychologists,
linguists, computer scientists, and others doing research in musical cognition are all decisive contributions towards
a systematic theory of music. Yet, there is a shady area that remains apart from mainstream spotlights. This
regards those very elementary concepts related to music, i.e., nof those related to larger structures but those
‘matural truths', those fundamental terms thet, once naturalized , are used as universal premisses upon which
theories and models are built. As o thythm, which is our ¢entral concern here, this situation might well be
illustrated by Martin (1972), to whom "whythm appears to be iaken so much for granted in music training that
there is only one book on rhythm theory although there ave many on melody, harmony and couterpoint”. Martin
is not very accurate as to the number of books he mentions, but we would argue that the situation has not
changed essentially (i.e. rhythm taken for grauted=naturalized) since then.

Computer Modelling of Music: is it interdisciplinary work?

At first glance we could admit that computer modelling of music - let us take it as an applied branch of the
computer sciences - does not correspond to 4 strict notion of interdisciplinary work, since this modelling would
represent a relation between a discipline (computer science) and its objects (musical phenomena in this case).
However, one could argue that computer modelling of music should be considered as a branch of the musical
discipline in which the computer (considered not only as hardware but as a complex notion including related
theories and methods) would have the status of a privileged tool. For our part, as a music teacher, we could
choose to support this last view, but we are obviouly far from having computer modelling of music and systematic
music theory (which is, in a way, a model of music as far as it is Theory) as one and the same discipline in which
the conceptual model and its physical counterpart would be complementary aspecis of the same inguiring
process (explanatory, not only descriptive).

Furthering this discussion is a task that is obviously beyond the scope of this paper. For the sake of our
interests, we will only add that, at present, computer modelling of music should be understood as interdisciplinary
work. In modelling music, one is not modelling music itself but rather relying on much knowledge about music
that is taken for granted . This means that what we have is not a simple relation bstween a discipline or technique
and its object but a potential relation involving two disciplines. Provided that due attention is given to unresolved
and problematical issues still belonging to a 'pure’, independent music theory, we will have true interdisciplinary
cooperation. Computer {or programming) courses within music eurricula are still exceptions rather then rule, as
should be the case, and music courses - maybe theoretical courses mainly - in computer curricula would, of
course, enhance interdisciplinarity.

| Simpésio Brasileiro de Computacio e Msica

85

Rhythm: a problem

No one would dgny the fundamental importance of rhythm to music. Many would agree that music is par
excellence the art of time and rhythm, and that this idea has more heuristic power than the truism music is the art
of sound . Nonetheless, we should also agree that rhythm is a very elusive subject. Linguists (see Benguerel &
D'Arcy 1986) would say: "it is already obvious that a detailed account of language will require a lof more
knowledge about rhythm", (but) "rhythm is very difficult to define satisfactorily”. Addressing a similar situation,
Willems (1954) tells us that back in 1738 "Matthenson reconnaisait limportance de la théorie dy rythme mais la
regardait ‘une science confuse’ ". Meschonic (1982) quotes Paul Valéry: "ce mot ‘rythme' n'est pas claive: Je
ne l'emploie jamais". -

However, in spite of that elusiveness, it seems that music theory (the elementary naturalized 'theory') has
some sort of answer to all that: just pick up a series of proportional durations (most of them materialized as
sound) and put thythm within our rational reach. Better still: look at those simple arithmetic relations made visible
by quarter and eight notes or even by their x.y rendering like in a piano roll window of a MIDI sequencer. No
more mystery. Durations! that is the stuff rhythm is made of, '

Contrary to this, Piaget (1946) would conclude that duration (pure duration) could be "but a myth", or at
the most, a concept that is not a primitive (fundamental) one but a result of previous operations based muck; more
on topologies thap on any kind of linear measurement. On the musical side, we could agree with Piaget by saying
that we cannot directly assess duration in a categorical way (like in: duration of note @ equals 0.25 of note b's
duration). Bachelard (1933) would say that "in music, a note's duration is not one of those pure elements,
clearly primiitive, as sight-singing teachers would make us believe. '

) If we discard duration as a concept central to thythm (as common music theory and notation would make us
believe), we must have some other coneept in its place. We will claim that this key concept i8 position as
proposed , among others, by Martin (ibid.) and by Howard and Perkins (1974). After having stated that rhythm
cannot be viewed only as a linear concatenation of segments, Martin, whose article involves both music and
speech thythm, states that “temporal patterning would refer to the onset of each musical note or syllabic
vowel"... and that a certain rhythmic rule "applies not to syllable duration but to syliable loci, specifically their
vowel onsets", From a specifically musical perspective, Howard and Perkins define impulse as "certain but not all
perceived discontinuities, abrupt changes in the ongoing auditory stimulus" (...)"we follow Allete (1951) in
considering such auditory events as central to rhythm, in contrast with durations of notes, Jor instance". They
will also add that “an impulse is ‘at’ a point in time and not a¥ other neighboring point".

Positienal Notation.

Notation is a very economic, yet powerful, encoding tool. Unlike words, i.e., the linguistic-discoursive
apparatus, a set of graphic signs like that of music notation bears no symbolic-arbitrary relation to the thing it
represents, but, toa certain degree, it has an iconic relation to the thing it represents. Thus, we expect to see
reﬂeqted in music .notaﬁon every important property of the thing represented. Sometimes, specially in music
notation, that rela_tlon may (unconsciously) be perceived as an indexal relation (in the semiotic sense), and written
nc?tm bec_ome, as it were, a symptom of the thing represented, if not the thing itselft (whereas no one has ever
tried to bite the word "apple™).

If we now go from musical notation back to music, we would be tempted to admit that if music notation has
(represefnts) durations, then music (thythm) has duration as one of its important properties. This is one of the
mechanisms (of sophistic logic) that, by virtue of the subliminal convincing power of notation, make us believe
tha} duration is_the stuff’ rhythm is made of. However, if - considering what has been claimed above - we
senousI.y reconsider our premisses regerding the important properties or , the relevant structural and perceptual
properties of rhythm, we can, again, go from music to notation, with the result that the notation must, in some
way, reﬂfx_:t the new premiss. One of such results is positional notation.

.Posm.onal Notation is supposed to be a purely rhythmic notation (it does not allow for pitch representation)
and is not intended as a universal substitute for conventional notation. It is not a descriptive or analytical notation
pu.t rather an .extrc_fmely economic and synthetic tool, both graphically and conceptually. As we have been testing
it m‘se'veral situations (teaching f.ex.) since 1980, we claim that positional notation bears a closer relation to
musical-thythmic perception and cognition (as compared to 'durational notation).

We start from the idea that rhythmic pulse-metter is structured as a topology similar to that of verbal phrase
syntex (see Hackman-1975, Martin-1972, Jackendoff-1977, Jackendoff & Lerdahi 1983). Unlike verbal syntax,

86 XIV Congresso da Sociedade Brasileira de Computacio

whose hierarchic trees are constituted by labeled nodes bearing specific syntactic-grammatical content (like
Noun Phrase, Verb Phrase, etc), rhythmic syntax bears no content in that sense.

Each graphical sign of the positional notation will account for the events (impulses, as in Howard & Perkins,
or, siraply the attack of a sound) relative to one pulse (rather an expandad pulse) as represented in figure 1.

In Figure 1, each node, i.¢., each rhythmic locus or pasiion has an arbitrary label such that level one (main
pulse, or what we would call simply pulse level) is represented by label A. Level two have two elements (A and
C) and level three has four elements (a b ¢ d). Figure 2 shows a series of four (expanded) pulses.

Figure 2.

i i

In Figure 2, the black nodes indicate that an attack (a discontinuity) has occurred on the position in question,
such that the rhythmic phrase thus represented would conventionally read JJJ FTF) JTJ (considering any x/4
time sigoature). Since lengths of notes are not of major relevance to positional representation, a number of other
readings would be as well possible, i.e., we could use rests to shorten the notes, provided that their onsets have
been kept untouched. .

The same rhythin represented in figure 2 could also be represented by the arbitrary labels used in figure 1.
Thus we would have the representation : A BC abed a*cd, where the sign * marks the empty position b. This
‘notation' , which is a symbolic one, is now closer to something we might call a Notation, but it lacks those
graphic features we would expect from a notation designed for fast and easy visual recoguition. We shall, then,
present a set of graphical signs that - in & one-sign-per-puise basis - will indicate a) which level we are in, b)
which position(s) has/have an attack and ¢) which position(s) is/are empty.

As to the first level, we will associate A (an sttack in A) with the sign O, and the empty position will be
represented by *. The two elements on the second level will each be associated with a different shape such that A
corresponds to a vertical straight line and C to the sign (. If there are two attacks (on A and C), this would be
represented by the sign 1. If only C has an attack, we should write {, so that the empty position A is negatively
represented by the absence of the respective graphical element. Absences (no atttack) either in C or in both, A and
C, would mean that we are on the first level. As to the third level, we would have four different shapes such that
a b ¢ d correspond respectively to ~ ¢ ~ ¢ (leR, up, right, down). Four attacks on this level will be represented
by the sign -+. In case atiacks occur only in a or ¢ (b and d being empty), this woud mean that we are either on
level two or level one. Absences on level three, just as on level two, are negatively represented by deletion of the
corresponding graphical element, just asin -+ (sbc*) —{a%cd) +(®bed) ~ (a*2d) + (*b**). Figure 3 shows () 2
rhythmic phrase in positional notation, and (b) the same phrase in conventional notation (the durations are full or
default dugations).

Figure 3
@ OeOH|O(4~|Oee}[Oses]

o4 d I Ly FITI L _FT3 .

| Simpdsio Brasileiro de Computacio e Musica

87

The topology represented in figure 1 obviously corresponds to what we would conventionally call the simple

time (let us call it o system). Compc?und time (let us call it B system) could be represented by a similar scheme: A

st level A and a second Ieve_l bearing three nodes or positions x y z. The graphical signal corresponding to an

“aftack in A will be the same signal 0. The three non-empty positions x y z will be respectively represented by

the signals / | \ (going up, up, going down). Three attacks on level two B would read A. As in « , empty

positions on this level entail signals such as ~ (x*z) and # (xy*). Figure 4 shows (a) a phrase as represented
with these positional signals and (b) the same phrase in conventional notation.

Figure 4.
@ 00 A|O NS A[Osse

o %l ST _JTI M de |

The total number of possible signals relative to o system may be easily obtained by calculating 24, that is:
sixteen (16) different signals. As for the B system, we will obtain 23, that is: eight (8) signals. Considering that
signals O and * are shared by both « system and p system, we will have twnty-two signals. Other symbols could
be created so that we could account for a fourth or a fifth o level (8 and 16 elements respectively) , or for a
third, etc. B level. However, this would work against the economy of the system as a whole. Rhythms
like § J73J737 could always be represented as A (O i(1), once we have established that the signals inside
the parentheses belong to a single pulse. Figure 5, then, shows the twenty-two symbols.

Figure 5.

O W A + 4 + F T

{ 2~ X - - oA
VRN ¢ b f

The symbol's spatial distribution in figure 5 bears a relation to the way we allocate each character (of a
TrueType font of characters we have developed - and have used here) relative to the keys of the computer
keyboard. No musical logic is in question, but rather a simple mnemonic criteria (e.g. the clockwise 'rotation' of
the signals 4 -+~ < * r~ , which have been allocated to the positions relative to the keys yuio hjkl in the table of

methods (althow we must admit that positional notation remains somewhat less universal than durational
notation!). The use of simple macras (a cormon tool in text editors) makes the process still faster. This will be
addressed below.

Some Potential Uses for the Positional Representation.

Music notation and MIDI sequencing software, as a rule, offer various methods for inputing musical data.
These methods, however, fall basically into two cathegories: those based on the metaphor of someone
(conventionally) writing music and those based on the metaphor of someone playing music. These are two
radically different activities as regards the mental and physical processes involved in performing them. Writing
muysic is an analytical task and, as far as rhythm is concemned, it necessartly (yet see above) requires as many
choices as there are notes as to which duration comes next (we will not discuss the fact that we actually fend to
think by way of groups of notes). This activity has no relation to any mental or physical musical process
whatsoever (assumning that duration has nothing, centrally, to do with thythm makes things even worse). Writing
tusic in a computer (using drag and drap or numeric pad ete.) is, hence, duly regarded as a slow method. So,
we choose the other method: just play, and the computer will do the job. As we know, this is still a fictitious
-Promised land, no matter how sophisticated is the quantizer we have. We know, however, that playing music is as
cloae as we can get tomusic itsclf. If we could at least transfer some of the mental and physical operations of

charecters). This makes the writing of rhythm in text editors considerably faster in relation to other existing

88 X1V Congresso da Sociedade Brasileira de Computaco

musical performance to the sct of music writing, without the inconveriences of the you-play-he'-writes
method...

As we know - and this is not at all new - there is a way of writing rhythms in which one acts neither as a
writer only nor as a player only. If we take two objects like key 1 (say, #one of numeric pad) and key e, and
continuously type leeeelelllelielelece, we will realize that our right hand has actually performed a rhythmic
phrase such as J_FT3} FTIJI1 . . But also, there is, running parallel to the performing-real-time process,
analytical activity enough to ensure that a simple computing device (e.g. the macro we are activating now) will
transform leseelelllellelelees into O ¢4 HQ. We would claim that much can still be done in the way of
applying these principles (as well as their visual interface: positional notation) to many areas of computer music
and of music cognition. As a footnote, we would add that positional notation cen be easily added to printed
music through the Brics 100l of a notation software.

Ne Duration in Music Teaching.

As we have mentioned above, we have been working with these ideas since 1980, both in a more theorethical
fashion and in everyday teaching. Although we still cannot rely on rigorous measurements, strong evidence allows
us to state that, in music teaching, when we eliminate the concept of duration altogether and use instead
premisses and resourses such as those presented above, the learning process is considerably faster than with
traditional strategies. This would mean that the positional theory might be a consistent path towards a better
understanding of rhythmic (musicel) cognition.

Sistemas e Linguagens para
Composicao

e REFERENCES.,

Bachelard, G. (1933). 4 Dialética da Duragéio. Atica.

Benguerel, AP. and J. D'Arcy (1986). Time warping and the perception of rhythm in speech. Jouwrnal of
Phonetics, 14 vol. 2.

Grillmer, S. (1986). The transfer of terminology from one field to another may be hasardous and
counterproductive for interdisciplinary interaction. Jounal of Phonetics. 14 (1).

Hackman, W. H. (1975). A Clarification and Reconstruction of the Concept of Metter for Music-Structural
Rhythmic Analysis following Philosophical-Analytical Paradigms. PhD. diss. Peabody School for Teachers.

Howsrd, V.A. and D. N. Perkins, (1974). Toward a Notation for Rhythm Perception. Interface Vol 1-2, 69:86.

Jackendoff, R. (1977). X’ Syntax: A Study of Phrase Structure. The MLLT. Press.

Jackendoff, R. and F. Lerdahl (1983). A Ganerative Theory of Tonal Music. The M.LT. Press.

Lindblom, B. and J. Sundberg (1976). Generative Theoties in Language and Music Descriptions. Cognition 4:99.

Martin, J.G. (1972). Rhythm (hiererchical) versus serial structure in speech and other behaviour. Psychological
Review, 19 (6).

Meschonic, H. (1982). Critique du Rythme: Antropologie Historique du Langage. Editions Verdier.

Moraes, Marcos R. (1991). Por uma Teovia do Ritmo: O Caso da Metdtafa Musical em Lingiiistica. Master diss.
Universidade Estadual de Campinas, UNICAMP.

Piaget, J. (1946). A Nogdo do Tempo na Crianga. Record.

Tomita, Yo (1994). Bach, The Font: Infine Musical Graphics for Databases and Spreadsheets. Computing in
Masicology: An International Directory of Applications Vol. 9 (ed. Hawlett and Selfridge-Field) CCARH,
Menlo Park, CA.

Willems, E. (1954). Le Rythme Musical. Editions Pro Musica, Fribourg,

ACKNOWLEDGEMENTS

This paper has been produced within the context of research project 11/93/PRPPG-UFES, supported by
Fuadaglio Ceciliano Abel de Almeida and Pro-Reitoria de Pesquisa e Pos-Graduagiio da UFES.

Conventional music notation was printed with a registered copy of the font of characters Bach, (see Tomita
1994).

I Simpésio Brasileiro de Computacio e Miisica

A Visnal Programming Environment
for Constraint based Musical Composition

CAMILORUEDA
Ingenieria de Sistemas, Universidad Javeriana de Cali
Cali, A.A 26239 Colombia

ABSTRACT

We describe a visual programming environment called Niobé in
which the composer can easily construct and operate on template
musical structures defined by a set of relations. Niobé provides
primitives allowing the composer to graphically program arbitrary
constraints on some musical domain (harmonic, rhythmic, etc) and also
a mechanism for computing one or several instances of specific musical
structures whose elements satisfy the given constraints. The composer
can in this way construct a potentially large data base of different
musical structures, each having the same precisely defined properties,
Resulting structures can be visualized and hand modified in different
supplied music notation editors. Niobé has been carefully optimized
for computing sequences of harmonic or rhythmic elements. It uses the
graphical interface of PatchWork, the visual music composition
language developped at IRCAM in Paris. Niobé is implemented in
Common Lisp-CLOS and is extensible.

I. Introduction

We present Niobé , a graphical environment for rule based music composition. Niobé is
well suited to the incremental construction of musical structures obeying precisely defined
properties. Structures are built in Niobé either by setting control parameters of built-in relations
or by imposing a set of new user defined constraints. This way of regarding computation falls
within the realm of what is catled Constraint Satisfaction . Niobé is logically divided in two
components: A computational engin adapted for solving constraint satisfaction problems in the
musical domain and a graphical programming interface. We show how the composer can take
advantage of the interaction between these two components to interactively construct and refine
harmonic or rhythmic structures in an incremental process. That is, instances of roughly
specified structures computed by the system can be visually represented in suitable music
notation editors. The composer might then see the need to impose further melodic or harmonic
constraints which are used by niobé to compute new refined instances. Niobé runs on top of
PatchWork (Laurson, Duthen & Rueda, 1992), a graphical music composition language
adapted to the representation of preocesses as a sequence of functional transformations. We
describe how to exploit in niobé the two alternative ways of regarding programming,
constraint-oriented and functional, to effectively compute complex musical structures, Niobé is
entirely programmed in Common LISP-CLOS (Steele, 1990). Finally, we present some
examples of the usage of Niobé in real musical applications.

II. Background

92 XIV Congresso da Sociedade Brasileira de Computacio

Several music composition languages such as Pla (Schottstaedt, 1983) have been defined in
the past. These languages consider the compositional activity as divided in two basically
independent processes, a score defining scheduling of different types of events and a functional
part where structures are built by composition of transformations. In the latter, the composer is
responsible for programming the appropriate transformations leading to the desired structure.
This activity requires in general good programming skills. To alleviate somewhat the burden of
the interaction of the composer with the computer, these systems provide a library of predefined
transformations the composer can use as basic building blocks. In Common Music (taube,
1991), this idea is complemented with a sct of built-in pattern structures that the user regards as
templates for instanciating the desired structure. Though very powerful, this schemes leaves the
problem of having to decide appropriate ways of combining patterns and functions. In a broad
sense, all of these composition languages reflect the functional paradigm of the underlying
implementation language in which it is necessary to describe a desired result by making explicit
the way of achieving it. There are situations, however, in which it is not at all obvious to find
appropriate algorithms to compute structures that nevertheless admit simple descriptions.
Recently, the composition environment PatchWork (Laurson, Duthen & Rueda, 1992) has been
proposed as a way of easing the programming task by redefining it as a visual activity.A
program in this language is a graphical patch where boxes represent computations and links
between boxes define functional composition of transformations (see figure 1). As in the above
mentioned languages, a library of predefined boxes provide building blocks for programming.
Although we believe that giving composers an entirely visual programming environment is a
step in the right direction, this might not reduce significantly the programming effort in
situations where the actual musical processes are not conceived algorithmically (i.e as a
sequence of transformations) at the beginning but rather as evolving sets of precisely defined
relations. What is needed in this case is the capability to propose descriptions of structures in a
declarative manner, leaving to the system the task of actually computing them.

[e— <1 35 79 12 15 18 21 25 20>
| p———
— const i d
%horr‘ﬁd M
Llfund "nth I(:
nth-ouertones I
%horl_':_‘d M

Figure 1. A PatchWork patch computing a chord from a set of harmonics of a base note

Recently, a system based on this idea, called Echidna (Ovans, 1990), has been proposed to
support counterpoint generation.Echidna is not in itself a music composition language but
rather a general purpose declarative programming tool based on the principle of constraint
satisfaction. The rules of counterpoint are first stated as a set of constraints on (finite) values

| Simpdsio Brasileiro de Computacio e Misica

representing pitches and then Echidna is used to choose subsets of these satisfying the given
harmonic and melodic constraints.

The two approaches, functional and declarative, are complementary in the sense that for
certain type of material one or the other prooves to be more convenient. Qur research concern
has been to unify both ways of conceiving the process of constructing musical structures. Thew
underlying notion sustaining this aim is that of a partially instanciated musical structure
(PIMS). Loosely speaking a PIMS (Assayag & Rueda, 1993) is a generalization of a structure
in the functional sense whose elements are sets and augmented with a collection of relations or
constraints. In what follows we precise this notion and describe its implementation in Niobé .

IIi. The theory of PIMS

A PIMS is the basic building block for generating musical material. It is defined as the
structure <D, R, C> where D is a finite collection of finite sets (called Domains), R is a binary
relation on D and C is a set of constraints (relations) on D. Basically, Ris a structuring relation
on D whereas elements in C are filtering relations on elements od D. Constraints in C define
subsets of the cartesian product of the sets in some subset of D. Any element in the cartesian
product defined by a constraint ¢ of C is said to satisfy c. If all constraints in C define non
empty sets the PIMS is said to be (locally) consistent . A PIMS in which D contains only
singleton sets is called a PIMS instacnce . A PIMS exemplary is a consistent PIMS instance.

A Partial order can be defined on PIMS as follows: Let P=<D1, R, C> and Q=<D2, R, C>
be PIMS. If each cartesian product on D1 is contained in some product on D2 then P<Q. Given
a PIMS P, the PIMS instanciation problem consists in finding a PIMS exemplary E such that
E<P. Seen from this perspective a PIMS is a structure scheme representing the set of its
exemplary structures. The graph in the figure below represents a PIMS for the set of all three
note chords starting at any one of the notes in the set base (in MIDI), having consecutive
intervals taken from the sets int] , inf2 (in semitones), not containing octaves and positioned
within the register from 60 to 79 in MIDI.

base int1 int2

Cl:intl #12; C2: int2 % 12
C3:intl + int2 = 12; C4: base + intl +int2 <79
R: base-> intl-> int2; D: {base, intl, int2}
Figure 2. A PIMS

3.1 Structure instanciation by arc consistency.

94 XIV Congresso da Sociedade Brasileira de Computacio

Building musical material can thus very genarally be seen as a two step process, first
constructing a suitable PIMS and then solving the PIMS instanciation problem on it. For the
latter we use in Niobé arc consistency techniques. These are well known algorithms in the
constraint satisfaction field aiming at improving the efficiency of finding a solution by trying to
reduce the given domains. Domains are reduced by insuring that constraints are locally
consistent. A constraint can be represented by a graph (see figure 2) having domains as nodes
and constraints as arcs linking those domains it constrains. An arc in this graph is said to be
consistent if for any element in any of the linked domains there can always be found elements in
the other linked domains such that all taken together satisfy the constraint. Values in the linked
domains not obeying this property can be eleminated, thus reducing domain sizes. Algorithms
for achieving arc consistency are described in (Mackworth, 1977). Recently, a more efficient
arc consistency procedure called AC-5 has been proposed in (Deville & Van Hentenryck,
1991). AC-5 runs in time proportional to the square of the biggest domain size, but can easily
be specialized to a linear time algorithm for useful categories of constraints. These are refered to
in (Deville & Van Hentenryck, 1991) as functional and monotonic constraints. Briefly stated,
these are constraints such that suitable representatives in each domain suffice to test the validity
of the constraint for the whole domain. Constraint C4 in figure 2 above is of this type. AC-5
forms the core of the structure instanciation scheme in Niobé . Additional optimizations are
considered by defining hierarchies on the PIM3 domains reflecting frequently encountered
musical constraints. One example is the problem of instanciating chord sequences structures
where constraints imposing particular melodic movements on the upper and lower voices are
frequently stated.Chord structures (PIMS) are thus supplied with an additional (hidden) domain
comprising possible sums of consecutive intervals in the chord. Melodic constraints can thus be
(automatically) redefined to act on the base note and sum-of-intervals domains avoiding the
need to look into each particular interval composition of a chord. Domains in Niobé are thus
trees allowing constraint impositions at any level. Figure 3 below shows an example this tree
for a chord intervals domain. A similar structuring technique has been proposed in Echidna
(Sidebotton & Havens, 1991) for representing constraints on real numbers.

Chord intervals domein: 8

lowest inlerval level:

minor

second Fifth

chord span
tevel:

15 23

O

chord chord ¢hord chord chord
set | set 2 set 3 set 4 set B
Figure 3. A structured domain

Musical constraints within a PIMS are in general conceived by the composer as having
different degrees of importance. We describe next a mechanism implemented in Niobé for
taking account of this fact.

3.2 Soft constraints in PIMS.

| Simposio Brasileiro de Computacio e Misica 95

Constraints in a PIMS can be assigned a degree of im j i
2 ' g portance. In Niobé this is si
3‘12]::5 l;itvlv)lcli:/?s Z_erot(usclcsrsl ﬁonstgamt) and one (required constraint). A (valeuatié)sn]?ui:cnt]il(a)lg iz
e instances. The value of an instance P is equal to one mi i
fle%;elecgsfg;_e rr;)(;is\t/jlsmlj))ortant %nsatisﬁed constraint ¢ in P.quobé conzr[l:x?tgss thhiegllx?slzovrgliﬂéczg
instar a y extending AC-5 with a process similar to th
rocedure used in several Artificial Intelligence applicati C ot ddpha beta
] Art i pplications such as
E;)r\rzxéallll]);,t;l;}ée Iélzl)s mitaﬁcxa?on problem is redefined as follows: Giveng:n}}’?lvtlrse(i’ s%&;}rgha.
] e Q<P such that, for any other PIMS instance R<P, Valuation (R)<Val, 4
A de(tial'led é\cgpunt of this way of handling constraint preferences (or soft (cozlgt‘:giz?sogafxqb)é
found in (Schiex, 1992). In Niobé , both the degree of importance of constraints and the

minimum value requiered of a solution are user controlled
. L = O3 arameters. We
interface of Niobé looking into the details of some examplI::s. develop next the user

3.3 Using Niobé.

Niobé isimplemented in Common Lisp-CLOS. A PIMS, its domai i
CLOS objects. A graphical interface in ParchWork is s’uppli(::(rila}r(l;ag(?ncs(t)rnusg?rlxmsaarg
parameterizing these objects and for triggering the instanciation mechanism. PIMS ins{gancn
can also be graphically interpreted, functionally transformed and displayed/edited in stand es
music notation by using suitable PrachWork editors. A PatchWork box (called harmo;irc
constraints in figure 4) representing Niobé defines entries for domains and constraint;
specifications. These entries consist of a set of parameters controllingtemplates of built-i
constraints and domains. In the example of figure 4, domains are sets of chords and the F’II\—/}ISl

to be computed is simply a sequence of chords obeyi i i i (
horizontal (melodic) constraints. The entry called a}snl(y)it:sy ng precise vertical (harmonic) and

[(U ¢ 7 112 10 €4 7 117 40 (47 97 587 I

interval-interp l(U (62 86> 40 (12 T16) 79 (0 24> 90 <0 36W|‘
-‘ " ronst - d
Tt ,m_fc,"u“ms [n-occords K0 ¢4 5> 40 <3 3 79 (4 55 90 (4 55
clons‘l] [ambT tus |[den=ite H const [
‘———Q Lalini-uvart J[int-hori e
1 T v e I 030 (47 11) 21 50 (23 5) 51 90 4
B] vs-sedil-repj[vi-fil t-hori const 5
const | ! fixed-notes |lrep—par—dens
X ranouwn~haut |11 t-pas-ban E:j
tE._E] InT7776rbla |[nbB-mouu77ok canst
[rE=dir=ck T——l
haraonic-consiraints E

Figure 4. The graphical interface of Niobé .

96 XIV Congresso da Sociedade Brasileira de Computagdo

is connected to a const box definining the global vertical span of the sequence. It covers two
octaves (62 to 86 in MIDI) in the first chord then goes to about 9 octaves (12 to 116) for the
40th chord and comes down to 3 octaves at the last chord (0 to 36). The span given for selected
chord numbers represent points of a linear interpolation computing the global span for the rest
of the chords. This thus gives the general form of the region where the chord sequence should
fit. The box connected to the entry int-vert (vertical intervals) defines the domain of intervals
(taken between consecutive notes) for the chords. For the first 40 chords only major third (4 in
semitones), fifth (7 in semitones) and/or major seventh (11) are allowed. In the middle of the
sequence very long intervals are demanded. The intended effect is to shift perception from
harmonic to melodic. At the end of the sequence the original intervals return. Entry int-vert-filt
defines any filtering relation on the interval contents of each chord. Here only the elimination of
octaves is imposed (by the predicate (not (ints 12))).Densite is just the number of allowed
notes in each chord. Here either 4 or 5 notes (as Niobé likes it) in each chord is established for
all but the middle of the sequence where exactly 3 note chords are demanded, the reason being
to precisely control melodic movement of each of the three voices in this part of the sequence.
Melodic control is done at the int-hori (horizontal intervals) entry of the box. Here the same
intervals of major third, fifth and major seventh (4, 7, 11) are imposed horizontally for the
upper and lower voices in most of the sequence, except in the middle where intervals of a
second, minor third and fourth (3, 5, 8) are actually requiered horizontally for each one of the
three voices. Although not shown in this example, melodic movement can be further controlled
by drawing break-point functions defining curves to be followed by the highest point of each
chord. Other entries (not used in the example) can define parallel or contrary movement of
voices (entry nb-mouv//ok), chord intervals contents as a function of register (filt-pas-band) or
lower bounds on the total number of different notes in arbitrary sections of the sequence
(renouv-haut). Figure 5 shows part of a sequence computed by Niobé from the constraints
specification of figure 4. The rhythm has been

Eﬂ J -120
1
4 & 45 & 4 4 &4 88 ¢ & & 4 a8 s 48 4 & & 4§ L:
f = e . "_HJ;*E
T=r= 4 SE=STe
= Sod ke Uaieaie-a | ol o | y
s Lan LS sRsRES
=
i
3 Jsmo
o of o o o & d 5 A G A ¢ S 4 9 o o A o B R R W Y W R Y e o
WENY 3 =F
=
0 & = =8
=
-8 e G- i
S = ==
L == =i & et L
Figure 5.

| Simpésio Brasileiro de Computacio e Misica 97
>

arbitrarily set (in one of the entries to the 7z box) to eighth notes. The above example solves a
chord sequence generation problem by a simple adjustment of parameters of built-in harmonic
and melodic constraints. This is only one way of proceeding. The composer can draw any
patch computing an arbitrary constraint and then connect it to one of the entries of the harmonic-
constraints box. niobé will then compute instances of the sequence taking into account the new
constraint. Figure 6 shows one example, used by the italian composer Marco Stroppa to
compute a sequence of chords following a given progression of homogeneity , defined as the
difference between the biggest and smallest chord intervals. The patch to the left of the figure
takes in the parameter box the current chord proposed by Niobé and also its position in the
sequence. The patch computes the homogeneity of the chord and tests it against the acceptable
range desired for a chord in that position of the sequence (see box interval-interp), giving
TRUE (acceplable chord) or NIL (non-acceptable) accordingly.

1V. Conclusions.

We have described Niobé , a music composition system integrating the relational and
functional conceptions of programming through the use of a visual programming environment.
Niobé has successfully been used by several composers to compute harmonic and rhythmic
sequences. A refined

hord intervals l]] Ehu—d index |
- pargrey

: e
I -b I : I
Lon] ecifitenz | e Zt{:‘l:

get-slot I‘ xs |
<D <B 9> 12 <D 23) l

interval-interp

I—lllsl 1 l Tist
1 9 X 4p
1229 (4> L—r‘r—”? Nzz | 1_r =
RV 24 7 119 JpVi =

2 | g '.'_‘___.__Jli;_'._ E

! list u I-—n!hl:

posn-match

hil

nil

a

il

il

patch

fung €

pil

l

[patch]p

3L

|[user-constrail

ihormonic-consiraints

E

S

cans irg int

E

Homogenzity {difference
batwaan mon wnd rin
hord intervals

Figure 6.

version of the example in figure 4 was used by the french composer Antoine Bonnet in his
piece Epitaphe. The german composer Michael Jarrell has used Niobé to generate melodic
sequences for his piece Rhyzomes -1V . We are currently studying more uniform models of
integrating the functional (and object-oriented) and relational aspects in Niobé . Although Niobé
has proved to be reasonably efficient (a few minutes in a Mac Quadra 700 for computing
sequences of less than a hundred chords) in several practical situations, we have accomplished
that at the price of restricting the allowed types of horizontal constraints. We are exploring
different optimizations of the base algorithm to allow the specification of more global vertical or
horizontal relations.

References

Assayag, G. & Rueda, C. (1993). The Music Representation Project at IRCAM. Proceedings
of t he

98 XIV Congresso da Sociedade Brasileira de Computacio

ICMC . Tokyo, 1993.]])
Deville, Y. & Van Hentenryck, P. (1991). An Efficient Arc Consistency Algorithm fora Class
of CSP

Problems. Proceedings of the IICAI . Sydney, 1991.
Lurson,M. Duthen, J & Rueda, C. (1992). The PatchWork Reference Manual. IRCAM , 1992.
Mackworth, A. (1977). Consistency in Networks of Relations. Artificial Intelligence . 99-118.
Ovans, R. (1990). Music Composition as a Constraint Satisfaction Problem. Proceedings of
the ICMC .
Schiex,T. (1992). Possibilistic Constraint Satisfaction Problems or "How to Handle Soft
Constraints”.

CERT-ONERA . Personal e-mail communication.
Schottstaedt, B. (1983). Pla: A Composer's Idea of a Language. Computer Music Journal .
7(1).
Sidebotton, S & Havens, W. (1991). Hierarchical Arc Consistency Applied to Numeric
Processing in o

Constraint Logic Programming. CSS-IS TR 91-06 . Simon Fraser University, Burnaby,
Canada.
Steele, G. (1990). Common Lisp: The Language . Digital Press.)]
Taube, H. (1991). Common Music: A Music Composition Language in Common Lisp and
CLOS.

Computer Music Journal . 15(2).

| Simpésio Brasileiro de Computacio e Milsica 99

Incremental evaluation in a musical hierarchy

M. DESAINTE-CATHERINE
K. BARBAR and A. BEURIVE

LaBRI“
Université Bordeaur I
351, cours de la Libération
33405, Talence Cedex
France

myriam@labri.u-bordeaus. fr

Abstract

The work we present in this paper is a formalism of a dynamic computational model
in a hierarchy. We are interested in representing musical hierarchies and bindings
of characteristics (such as the mode, measure, tempo, duration, key, etc.) within
them in order to provide the composer a means to verify the consistancy of the piece
during the compositional process. The model transfers any modification from the
composer to the representation in an incremental way, without computing again the
whole hierarchy.

1 Introduction

The complexity of a musical piece can be organized in a hierarchical way based on its temporal structure.
Musical characteristics (such as the mode, measure, tempo, duration, key, etc.) can be defined at any
point of the hierarchy (that is any sub-piece). These characteristics are then bound together according to
the temporal structure and the musical rules imposed by the composer. We are interested in representing
musical hierarchies and bindings of characteristics within them in order to provide the composer a means
to verify the consistancy of the piece during the compositional process.

Our work may be situated between constraints propagation techniques and hierarchical representa-
tions & la Balaban. We are interested in designing the representation and the computation model which
is appropriate to it. From our point of view, a musical piece is an object that is composed of several
dimensions. Classic dimensions are time, frequency, timbre and volume. The variations of the values
in these dimensions are not independent from each other. The result of a musical analysis is exactly
a seb of correlations between variations within a single dimension and between different dimensions. In
order to formalize those correlations, we define several relational operators which are dedicated to specific
dimensions. The set of values in each dimension can then be structured in a hierarchical way using these
operators. Hierarchical way means that the object representing the structure is not always a simple tree,
but a directed acyclic graph (see the notions of shared occurrencies and repetitions of Mira Balaban
(Balaban 1993)). The originality of this work relative to the others based on hierarchical representations
is the addition of a semantics to the hierarchy. This semantics provides a very sound way to represent

17, aboratoire Bordelais de Recherche en Informatique — Unité de Recherche Associée au Centre National de la Recherche

100 XIV Congresso da Sociedade Brasileira de Computagdo

{ Simpdsio Brasileiro de Computacdo e Misica 101

Example: Let P={e;: A=DB.C, eg: C= E|F}. The tree associated with the equational program
Pis:

some correlations in order to verify or apply them. The obvious limit of this representation is that it
does not compute the correlations that are not based on an operational structure. We believe, however,
that there almost always exists a structure underlying every kind of correlations.

Owr initial study concerns the time dimension. Time relational operators have been widely studied
(in particular, the musical concatenation of Mira Balaban (Balaban 1991), relations of Allen (Allen 1983)
and their application to music by Alan Marsden (Marsden 1994)). The two operators concatenation and
superimposition provide a simple model with an acceptable power of expression. We first investigated
the static aspect of the model (see (Barbar, Desainte-Catherine, Miniussi 1993) and (Barbar, Desainte-
Catherine 1992)) in the following way. We first transform a musical equational program defining the
structure of a musical piece into a derivation tree according to an attribute grammar. This derivation
tree is then considered as a data structure which represents the musical hierarchy. Each attribute in the
derivation tree represents a wmusical characteristic and the associated semantics represents the musical
rules binding these characteristics. The evaluation step computes a solution (the values of all character-
istics of the hierarchy), if it exists.

This previous work provides a very sound model but is insufficient in the context of an interactive
compositional environment. A dynamic model is needed. This model must transfer any modification from
the composer to the representation in an incremental way, without computing again the whole hierarchy.

The work we present in this paper is a formalism of a dynamic computational model in a hierarchy.
The data representation is the same than the previous one. Only the computational model has changed.
This model manages modifications (giving a value to a characteristic, changing a value of a character-
istic, modifying the hierarchy itself by substituting one sub-piece by another) and maintain the overall
consistency of the piece. The first two operations necessitate the propagation of the modifications of a
characteristic in any direction in the hierarchy. The last operation implies the management of several
hierarchies at the same time. Our formalism is no longer based on attribute grammars, but on systems
of equations.

In section 2, we present the syntactic aspect of a musical hierarchy. It is represented by an equational .
program which is given with a set of syntactic equations. We give in section 3 the musical systems or the
relations between characteristics attached to nodes of a hierarchy in terms of sets of equations on these
characteristics. We define the solution of a musical system in section 4. An incremental strategy for the

3 Musical Systems

The semantics of a hierarchy is built by a kind of union (called a cartesian union) of the musical systems
of ea§h syntactic equation composing the equational program representing the hierarchy. In what follows,
we will only study the case of the characteristics measure and duration which will be denoted, respectively,
by m and d.

3.1 Musical Systems associated with Syntactic Equations

We introduce the concept of musical systems associated with a syntactic equation with the two following
examples. The reader interested in the formal definition can refer to (Barbar, Desainte-Catherine, Beurivé
1994). We give two examples of musical systems for the characteristics measure.

Example 3.1 Let Sem = {51,52,53,84} be the set of equations sysiems associaled with the syniactic
equation e = A= B .C, where

determination of the solution is given in section 5. The section 6 contains our conclusion. m(B) # &, m(C) #£ ¢, m(A) # e, m(A) = m(B),
’ (51) En(f) # m(C’),m(A) =g, (‘32) TH(A) - m(C),
. m(4), m(B), m(C)) € Domain(m)® A), m(B), m(C D i 3
2 Bquational Program), m(B), m(C)) (m) (m(A), m(B), m(C)) € Domain(m)

s m(A) =e,m(B) =¢, m(A) = e,m(C) =&,
(53) { (m(A), m{B), m(C)) € Domain(my* (%) { (m(A), m(B), m(C)) € Domain(m)*

The value & denotes a measure that is not constant. The musical meaning of this musical system is the
following:

2.1 Temporal Operators

Let us denote by (¢,d, f,s,v) an event, where ¢ is the beginning time, d the duration, f the pitch, s the:
sound and v the volume of the event. Let ey = (t1,d1, f1,51,v1) and ez = (ta,d1, f2, 52, v2) be two events.
The operators of concatenation, denoted by ., and superimposition, denoted by |, are defined by:

ercn = by b dy = 3 erles = 1y = ta,d1 = da. e When two parts have different measures, the measure of their concalenation is nol constant.

. . e When fwo parts have the same measure m, their concatenation has also the measure m.
2.2 Syntactic Equations
o If @ part A has got « measure m, every subpart of A gets the measure m.
The temporal structure of a piece is defined by the means of syntactic equations whose forms are given

by general syntactic equations. For example, let us define the two syntactic equations that will be used
in this paper: e = A=B.C, ¢ = A=B | C where A, B and C represent musical pieces.
The equation e means that the piece C'is concatenated to the piece B, i.e. it starts exactly when B
ends. The piece A is the concatenation of B and C. The equation e; means that the two pieces B an
G start and end at the same time. The piece A is the superimposition of B and C.

Let us now define a simple sysiem for the measure and the superimposition operation: two paris that
are superimposed have the same measure. The set of systems is reduced to the following equation system:

(55) { m{A) = m(B), m(4) = m(C),
(m(A), m(B), m(C)) € Domain(m)?

Example 3.2 The following musical system for the measure involves also the characteristics duration,

denoted by d. Let Se = {53, 50,510} be the set of equations systems associated with the syntactic equation
e X =Y .Z, where

2.3 Equational Program or Hierarchy

An equational program is a set of syntactic equations. We will only consider equational programs whic¢
can be represented by a tree i.e each symbol of musical piece occurs at most one time in the left hand sid

o Y o alanh

102 XIV Congresso da Sociedade Brasileira de Computacao

. m(Y) # m(Z),
;’E(Yy))j iy > o) d((y))<96 el
(58)) m(x) = m(Y) U) = mz)

(m(X),m(Y),m(2)) € Domain(m)® (m(X),m(Y),m(2)) € Domain(m)®

m(X% = mE}Z’g
s10 m(X) = m(Z), ‘ \
() { (nS(X),m(Y),m(Z)) € Domain{m)

3.2 Musical Systems associated with Equational Program

We have defined the formal object representing musi}fal sys

isti i hich are those mu
haracteristics. Now, from small pleces W : : .
:njsica.l system which is associated to a whole equational program. Tor this purpo

cartesian union operation which simplifies the final definition.

tems involving syntactic equations and §ets of
sical systems, let us define how to build the
se, we introduce the

Definition 3.3 Let By and B2 be two finite sets of sets. The cartesian union of Ey and Eg 15 defined
e .

by: Byl Bz = {e1 Uesles € Br,e2 € Ea}.

= By = {{a,b},{c}}, then
E le 3.4 Let El = {{1:2)3}){4)5}1{6}}' 2
E)I(aanI; = {{1, 2) 3; ayb}? {1)2:3)‘7}) {4x 5,(1)6}, {4:51C}1 {67 a, b}) {6’ C}}

We denote by e any syntactic equation in P and by S, the set of

Let be P an equational proghett Let be T a set of characteristics. Then, the set of equations systems

equations systems associated with e. _
associated with the equational program P is:

S = EFJ(L'H Se.‘r)

eeP vell
ated with the equation e for the characteristics 7.

Example 3.5 Let P be the equational program {e1 : A= B.C, e3: C=E|F}. Then,we have:

where s, i3 the musical system associ

o the musical systems associated with the equations e; and ey are:

.) "y
-8 = {s1, 82,53, 84}, the cquation syslems given i

o (6} = (d(A) = d(B) + d(C), d(A) 2 0,d(B) > 0,d(0) 2 0 } -
—sehm = {s¢} = {m(C) = m(E), m(C) = m(F), (m(C),m(E),m(F)) € Domain(m

wserg = {57} = {d(C) = d(B),d(C) = &(F),d(C) 2 0,d(E) > 0,d(F) = 0}

~Sel’: Seym B Sed = {51 U 85,59 U 83, 53 U s5,84 U 35}

=S¢y = Seg,m b’J Seq,d = {56 u 57}

the musical systems associaled with the program P are:

5= E—J (LJrj Sey) = Sey L-H 5o, = {51 Us5,32Us5,53U55,s4U55} L—}j {ss U sz}

e€{e1 02} vE{m,d}

S = {51,5,6,7 » 52,5,6,7 s 53,567 54,5,6,7}

where for all i,], B0 osijeg=siUsjUsk U s, As ezample:

; 3
A # e, m(4) = m(B), m(4) = m(C), (m(A), m(B),m(C)) € Domain(m)
T e hey) 0,4(B) 2 0,d() >0 e
82,867 = Y m(C) = m(E),m(C) = m(F), (m(C), m(E), m(F)) € Domain{m)
HO) = d(B),d(C) = d(F), () 2 0, d(B) > 0,d(1) 2 0

| Simpésio Brasileiro de Computacio e Misica 103

4 Musical Equational Program

A musical equational program (MEP) is the main object of our model. It represents the state of the
composing process at one time, that is:

o the state of the hierarchy, which is represented by a set of syntactic equations,
e the state of the musical system which is associated to the current hierarchy,

o the set of all the assignments of some parts characteristics that have either been given by the
composer or either been computed from the musical system.

Definition 4.1 A musical assignment is an equation of the form c(A) = v where ¢ is a characteristic
symbol, A is a piece symbol and v a value in the domain of c.

Example 4.2 Let be the following MEP : < {e; : A = B.C, eg : C = E|F} {s.,,5¢,},{m(4) =
3/4,d(E) = 10} >, where 5., and s., are the musical systems of ezample 3.5.

4.1 Solutions of musical equational systems

Intuitively, the solution of a MEP is the intersection of non empty solutions of all musical systems
associated with the equational program.

Definition 4.3 Let < P,S,G = be « MEP. Let sol(s) be the set of all the solutions of a system s € S,
each solution being given by a set of assignments of the form ¢(A) = v where ¢ is a characteristic and A is a
symbol representing musical piece. Let be solg(s) = {0 € sol(s)/G C o} and solg(S) = U solg(s). The
€S
solution of < P, S,G = is the set of assignments ﬂ © o, So we will write < P, S,G > ﬂ 0.
o€solg(S) ag€salg(S)
The solution of < P, S, G » is the empty set if G does not constitute a part of some solution of S. In
that case, the system < P, S, G > is said to be invalid (or not consistant).

Example 4.4 Let us consider the MEP < P, S,G >, where S is given in ezample 3.5 and G = {m(A) =
3/4,d(E) = 10}. Then, we have:

sola(s2,5,6,7) = {{m(A) = m(B) = m(C) = m(E) = m(F) = 3/4,d(E) = d(F) = d(B) = 10,d(A) =
d4,d(C) = dc}/da — do = 10}, (it contains an infinite number of solutions)

solg(s1,5,6,7) = solg(sss,67) = solg(sas67) = 0.
Thus, the set of all solutions of S is solq(S) = U solg(s) = solg(s2,5,6,7)
s€s
and the solution of < P,S,G > is ﬂ o= ﬂ o=
o€solg(S) g€sola(s2,s,6,7)

{m(4) = m(B) = m(C) = m(E) = m(F) = 3/4,d(E) = d(F) = d(B) = 10}.

- Definition 4.5 A MEP < P,S,G » is saturated if < P,5,G > F G.

Example 4.6 The MEP < P,S,G » given in the previous ezample is not saturated because the assign-

ments m(B) = m(C) = m(E) = m(F) = 3/4,d(F) = d(B) = 10 do not belong to G. On the contrary,

< P, S,GU{m(B) = m(C) =m(E) = m(F) = 3/4,d(F) = d(B) = 10} > is saturated.

We note that here we calculate the solutions of the musical system associated with the whole hierarchy (or

-tree) with respect to all assignments given by the composer. An interesting way for the determination of

the solutions is the elimination of all invalid musical systems each time the composer gives an assignment.

XIV Congresso da Sociedade Brasileira de Computacdo

5 The Incremental Strategy

The incremental evaluation on 2 musical equational program is the computation of a solution step by
step. It consists of the computation of assignments which are deduced by the musical systems with
initial assignments which are given by the composer. Let < P,S,G > bea saturated musical equational
program. A slight modification of < P,5,G > implies modification of the solution. The incremental
strategy consists of the computation of the new solution by modifying the old one without computing
again the whole solution. Now, we give the principle -of the incremental evaluation on a hierarchical
structure. The nodes of the tree are denoted by u1, ..., un. We start with a saturated MEP < P, S, G =
associated with the tree. Then we add a new assignment g; on a variable of the sub-system associated with
the node u;. Then, in order to saturate < P,S,Gug; »ieto calculate the solution &' (s.t < P, 5, GUg; =
F G"), we proceed as follows:

e we calculate the solution of the sub-system at the node u; w.r.t the assignments G U gi;

o we propagate to the father and the sons of the node u the assignment of the solution which concerns
yariables in their sub-sytems and so on.

We give a recursive fonction sol for the computation of the solution of the musical equational program.
This is represented in the following schemaz:

It shows the decomposition of the function sol at the node u; in a resolution () of the musical systems
at u; and three recursive calls to the father, left son and right son of u; which are denoted respectively,
by f(ui), l(us) and r(us), on the figure. The definition of the relation F can be given by an automata
(see (Barbar, Desainte-Catherine, Beurivé 1994))

6 Conclusion

We have presented a model for representing musical pieces without repetitions by the means of a temporal
hierarchy. Moreover, this model provides a way to compute automatically some musical characteristics
by using equations systems and values that are given by the composer. The result is a very efficient
software based on automatas solving the systems. Now, the power of expression of the model is too
restrictive. It is necessary to integrate repetitions and several concurrent structurations. Those extensions
will complexify the model and improve its efficiency. Now, we are currently working on the concept of
abstraction of musical hierarchies for representing musical forms and items in the context of an interface
for the composer. The model would then be useful for analyzing too. At last, the study of operators on
other musical dimensions will increase again the power of structuration of the composer (and the power

of expression of an analysis).

| Simpésio Brasileiro de Computacio e Mdsica

105

References

Balaban, M. (1991). Music structures: the Temporal and Hierarchical A i i
e e h ! r spects in Music. Technica
FC-035 MCS-327, Ben-Gurion University of the Negev. P in Music. Technical report

Balaban, M. & Samoun, C. (1993). Hierarchy, Time a : . .)
(lesiygn, 1(3)“ () rchy, Time and Inheritance in Music Modelling. Languages of

Allen, J.F. (1983). Maintaining Knowledge about Temporal Intervals. C ications of 1
36011, .35 843 p s. Commaunications of the ACM,

Marsden, A. (1994). The Representation of Temporal Relations in Music writing in progress.

Barbar, K. & Desainte-Catherine, M. (1992). Using attri i i
, ' . . g attribute to find solutions f i
programs. Technical report 92-77, LaBRI, Univ BX-1. @ for musical equational

Barbar, K. Desainte-Catherine, M. & Miniussi, A. (1993). The semanti f si iers
usis Joumal, 17(4), pp 30-57. () ics of a musical hierarchy. Compuier

Barbar, K. Desainte-Catherine, M. & Beurivé, A. (1994). Incremental Ri i i
) B » ML » A . tut
Technical report 964-94, LaBRI, Univ BX-1.) ol Resolution of Musical Systerns.

| Simpdsio Brasileiro de Computacio e Misica

107

CAMM - Automatic Composer of Musical Melodies

Eloi Fernando Fritsch *
Rosa Maria Viccari t

Abstract

The purpose of this paper is to present the implementation of a grammar-based software named
CAMM - Automatic Composer of Musical Melodies (or in Compositor Automético de Melodias Musicais,
in portuguese) - which is capable of generating melodies. CAMM has a set of rules that represent the
musical knowledge needed to generate simple melodies in a limited and well-defined musical universe, i.e.
style.

Musical parameters, such as notes,

durations and intensities, are put together by means of a
grammar in order to generate simple melodies

which can be used for the composition of pieces of music.

1 Introduction

In order produce a system that uses rules to compose melodies (Miranda,
to study how music can be composed and the ways to compose, to arrange in mus
improvise in music (Cope, 1987). Based on these compositional principles, it is possi
. cognitive aspects of music composition with a computational approach. In this man
is possible to abstract from the musical universe certain aspects related to the task of
We believe that musical models and

using three basic components :

1990), it is necessary
ical harmony and to

ner, we believe that it
f melody composition.
structures represented in the listener’s mind are made

" Melody
¢ Harmony
¢ Rhythm
In order to represent these models and strucutres in the computer it is necessary to define
the rules that govern the relationship between their componentes. The musical language, from the

computational point of view, must be treated as an organized symbol system (Roads, 1985). This enables

the creation of the grammar syntax and rules. From now on we will refer to these rules as components
of a grammar.

CAMM was developed with the following objectives: -

e to create musical grammars usin

g the Prolog programming language to represent the musical
knowledge;

- "MsC student in Computer Science (CPGCC/UFRGS),
Artificial Intelligence & Music. Universidade Federal do R
Pés-Graduacso em Ciéncias da Computagao- CPGCC, Av.

Graduated in Computer Science (UCS, 1991). Areas of interest:
io Grande do Sul, Instituto de Informética - UFRGS, Curso de
Bento Gongalves, 9500 Bloco IV - Agronomia- Campus do Vale,
CEP 91501-970 - Porto Alegre - RS - Brazil, Caixa Postal: 15064 FAX: ++55 (051) 336-5576, E-mail: fritsch@inf.ufrgs.br

tPhD in Computers and Electronics Engeneering (Coimbra/PorLugal). Areas of interest: Artificial Intelligence, Logic
 Programming. Universidade Federal do Rio Grande do Sul, Instituto de Informética- UFRGS, Curso de Pés-Graduagio em
Cigncias da Computagéo - CPGCC, Av. Bento Gongalves, 9500 Bloco IV - Agronomia - Campus do Vale, CEP 91501-970
= Porto Alegre - RS - Brazil, Caixa Postal: 15064 FAX: ++455 (051) 336-5576, E-mail: rosa@inf.ufrgs.br

108 XIV Congresso da Sociedade Brasileira de Computacdo

TECHNOLOGY ARTIFICIAL INTELIGENCE

MUSIC

ARTIFICIAL

INTELIGENCE

TECHNICE

PROGRESSIVE
BLUES 4
SAMPLERS

LOGIC PROGRAMMING

SYNTHESIS

SEQUENCERS

KNOWLEDGE

TION

HIDT o

ABRECTS
HARMONY

MUSICAL
GRAMMARS

THEORY
COUNTERPOINT
o RYTHM

£n MELODY
g COMPOSITION

AUTOMATIC COMPOSER OF MUSICAL MELODIES

Figure 1: Representation of the universe of music, science and technology used to model CAMM

o to construct a musical program capable of using the MIDI system resources, such that the melody
generated can be executed by an instrument and stored in a sequencer;

o to use the program in the composition of melodies where musical phrases generated by the program
may be used by a human composer in a piece of music;

e to show that some melodies generated by a grammar written in Prolog may be artistically beautiful;

Although there are other softwares similar to CAMM, the system architecture, the heuristics
and the grammar used in CAMM are slightly different. Among many musical systems used for automatic
music composition we can mention here two systems which share similar characteristics with CAMM:
EMI and the Computational Generation and Study of Jazz Music. The EMI system (Experiments in
Music Intelligence), cretated by David Cope, also uses grammars. It is more complex though. It works
with many other different musical aspects, such as the ability to manipulate intervals (Cope, 1987). In
CAMM we limit the scope of the grammar to fewer parameters. The Computational Generation and
Study of Jazz Music, by Francesco Giomi and Marco Ligabue, generates harmonic paths e improvises jazz
melodies (Giomi, 1989). This system uses rhythmic cells similar to those of CAMM and also has more
sofisticated functions. Nevertheless, CAMM approaches mainly melodic aspects, instead of harmonic
ones and more, it generates blues melodies, and not jazz melodies.

As we are interested in the use of Al in music we selected a declarative programming style
for implementation using Prolog. There are many other systems programmed in a declarative way,
such as the Program for Music Segmentation, by John Roeder and ARTIST (for Artificial Intelligence-
based Synthesis Tools) by Eduardo Miranda (Miranda, 1994). The former does not generate music
though. Roeder’s system was developed with pedagogic interest in the field of music analysis (Roeder,
1989). However it is very inspiring how Roeder uses a kind of grammar-orientated paradigm for music
segmentation. The latter is a system that uses a kind of natural language (i.e. words in English) to
communicate with a synthesiser aimed for producing sounds from qualitative, perceptually-orientated
descriptions.

| Simpésio Brasileiro de Computacio e Mdsica

109

2 HARMONY AND MUSICAL IMPROVISATION

Most popular music styles which involves im isati

‘ s provisation, such as contemporary jaz igi

from b];e§. ’Ihuts)]we selelcted bll;es as the musical style to be studied in this work Fﬁgmz{hzrf:s(a)t;i

oint of view, a blues scale may be used very efficiently within the t i i

(Prediger’ o), y welve bars, typically found in blues
CA.MM uses only one .scz‘a,l.e at a time to build a complete melody. The amount of variations

that CAMM is able to g.enerate is ilimited, taking into account the amount of possible combinations of

the note§ and of fhythmlc figures that would be possible to do. On the one hand this limitation is good

because it contraints the system to produce, let us say, only a small set of consistent melodies accofiin

to a simple grammar. On the other hand the output can get quite repetitive and loose musical interesl;g

3 BASIC ASPECTS OF IMPLEMENTATION

CAMM’s grammar deals with four basic parameters of a melody:
e notes
o durations
o pauses

e intensities

We represent these musical parameters in text
MIDI code (Gomes, 1988). The distribution and groupin
use in the construction of musical phrases. For example:

. In this maner we can have musical knowledge bases that
_above. ! Other parameters are already completely repres
to be ?ir_lked to other parameters to mean something. Pal
ntensities nor to notes.

The DGC formalism (Definite Clause Grammar)
) > i and Prolog language are used to buil
'i musical grammars {Arity, 19'86)A ‘Wlth the use of the DCG formalism it has begen possible tg wl;;tg :}1::

grammar in a simple way (Viceari, 1992). The grammar provides means for the system to select, fi

finite set, the parameters which generates a musical event, eme
CAMM still misses a bold graphic i i
' phic interface. For this reason, the i is di

\ ! } ¢ program input is directl
;r;:?;;r;af;ﬁitmtgrlz;eter s comfr;lland ll;le, typing the appropriate commar;d followed by pafameter:e’i‘hﬁ
€r 15 the name of the scale to be used. The second parameter is th lody’ Si

the melody is always built on a quaternar ies i ration af pores, pempo. Since
1) . : y rhythm, what varies is the duration of notes. Theref
-melody’s tempo will be slower if it has time figures with bigger values and it will be fast.er if?:eh(::,tiizee

figures with smaller values. The thi i : se s N
cound. e third parameter is the melody’s intensity, i.e. how loud its notes should

ual form. Each statement has its corresponding
g of parameters are arranged according to their
all the scales and all rhythmic cells are grouped,
represent exactly the four parameters metioned
ented in the knowledge base. They do not need
uses, for example, do not need to be mapped to

For example: printtema(a,lento,forte).

_using the A scale, with a slow tempo (lento) and th
(forte).

means that the grammar will compose a melody
at most of the notes have to be played very loud

4 THE NOTE PARAMETER

:‘) The way CAMM treats musical notes is based u
do (Fritsch, 1992) (see fig 2). CAMM has a knowledge
selects the scale that will be used to produce the melody.
18 determined by a distribution function.

pon the way we believe pop music composers
base that contains scales of blues. The user
Each scale has a set of notes whose sequency

I a later step, these elements are
Dbart of the context of the melody, but
becomes to be part of the melody.

g:the:}c:fl. For examx?le: a musical note without duration and intensity can not be
when this same note is mapped to a duration value and to a intensity value, than it

XIV Congresso da Sociedade Brasileira de Computagéo

110

The popular aceposer needs to play the nelody ana listen to
the results, in order to bs able to validade hia nusical ideas.

B N - ET
SERLILEL U AL L ELLL

The musical instrument
works as & validation
ocbject for the popular
composex ldeas.

In generxal, every populax
composer nssds s musical
instrurent to help in the
crestions of the melody.

Fopular Composer:

- Composas asthetically
- Create in a trial basis
- Enows the harmonic fiald used

in the creation of musical
phrases.

Figure 2: An attempt to model the cognitive process of music creativity.

Once the user has selected a scale CAMM will manipulate the relation among its notes based
on the harmonic field of the scale. We say that this harmonic field defines how notes are realted to each
other. The interaction between the user and CAMM is illustrated in Fig. 3.

There is no deterministic mechanism which defines the order or how many times the same
notes will oéeur in a melody because, as shown in Fig. 3, the purpose of CAMM is to present new options
to the composer. Sometimes these will be very impredictable indeed.

The repetition of the function that selects notes is determined by the sum of the durations
which they are mapped to. When the twelve bars are filled with notes concatenated with its respective
duration, then the function that selects notes will not be invoked anymore and the composition will be

sent to system output.
The blues scales that compose the knowledge base are: C, F, Bb, Eb, Ab,Db, F#, B, E, A, D,

G.
Figure 4 shows the possible values for the first parameter of the grammar. Each of these scales

is just a list of coded notes, treated as such by the program.
As an example, we present an scale extracted from the CAMM knowledge base:

notas_de_blues (c, [nota (c1,60), nota (eb1,63), nota (£1,65),
nota (gb1,66), nota (g1,67), nota (bb1,70), nota(c2,72)]).

The ¢, outside the square brackets, is a constant which indicates that the notes set is a C scale.
All notes have the same chance of being chosen. Since they are seven notes, each one has a 14.3% chance
of being selected. The decision for the octaved tonic was made accordig to an aesthetic experiment made
by the author. As shown in Fig. 5, the Prolog program can be altered, in order to increase or decrease
the probability to generate specific notes (Roeder, 1989). Since the tonic represents a rest sensation when

| Simpésio Brasileiro de Computacio e Miisica

111

! —
The user inicially] T | [4388

supplios ths needed

paxsmetors to CAMM

The composer listans to the
::iody, analyses, chooses m uangol-r Liatens to
phrasea that please him mustoal :g{nsa?:r h:l'.u

most and uses thesm
Rrusical material in h:: conatructions of aimilar
phraces in hie new

campositions. el
aompoaiticna.

t 4

1oz nml KIOE 18

- Genexate tha melody according
user paramators had

CAMNM

- The melody may be listened
by the human composes oF read

~ CAMM la able to produce as much
melodics as the usaxr desires

Computer

Figure 3: Process where CAMM i i
- Pro provides melodic phrases, unexpected by th i igi
new musical ideas that, later on, will be transformed in m;w compositionys © composer, which originate

it is playec}} :,‘;,w]is sel‘.l t; be selected with more probability in order to create a good musical output ?
engineer int‘ewect noIv(;eea”g; l};ai; hf tol:ebalte;ed, it is necessary that the music expert and the knowledée
- oth shou e the same person. The knowledge i ’ ion i

represent tXe experience of tl_le music expert, altering facts and rules alreadygineggA"l\‘/flev; ° function is to
nson eMhs mxtentfone}? earller,‘ CAMM generates notes in textual and coded represen'tat.ion. For this
(Yavel(,)w%) r;;) e in the scale is associated to its decimal representation of the standard MIDI code
(Yavelo- mes.sag:;u;z; zvheersnyt}rla] gx:ammTa;; genzrates the textual musical notes, it will also generate a set

nthesiser. The codification for flat notes and shar i

c p notes are the same.

;r\xlelz:r::su 1;?:;;‘ t;())crtz)‘(,:r?p_lea.thetcgds fm}r1 a F# is the same than that for a Gb, if they are in the same 26525
o : s indicated by the number that follows the note, e.g. C1 .
C of the pla[r;o, C2 one oct,'fwe above the central C of the piano, and ’so.iln corresponds o the central
oo or & 2 MNiIuses a dxstnbutxon. function to determine whether the events of the melody will be a
pause. However the probability for selecting a note is much superior than for selecting a pause

Otherwise the output would i
ther probably have only d indivi
; wich fo et the ot would probabl me]()dies.y ispersed notes and a few individual short sequences -

5 THE DURATION PARAMETER

‘ In CAMM, before the melody is out i

¢ . .
alucs are Ay te},(maly e p);ogr(;um[')u ted, its notes are mapped to duration values. Durations
A bar is constituted by pauses and notes with their durations. Each bar generated by CAMM

 uses by default a 4/4 thythm. CAMM i i
“avai[able ter e b, CAM selects and fill a bar duration values according to the space still

2 :
according to the authors’s musical taste.

112

XIV Congresso da Sociedade Brasileira de Computacio

Hot of available aaales

salects scale

Raramater provided
to the aystea for
the cholce of tha

scale

nota C

b

EIR|OEIEE
RIRIEIEIEE

8ot of notes

Predicate that ramdemiaally
chooses the notea in the
seleated scale.

Predicate for the
union of the notes
with ths other
musical elements.

Hotes selected
on at a time

Figure 4: Selecting notes from a blue scale.

Depending on the tempo especified by the user, the duration values will be longer or shorter.
If they are longer the melody will have a slower tempo and if they are shorter the melody will have a
faster tempo.

There are two ways to provide duration values to notes: by selecting a value for each individual
note or by selecting a rhythmic cell, i.e. a short rhythm pattern. In the current version of the program
there is a probability of 60% that the system uses the latter method and 40% the it uses the former
method.

5.1 SELECTING DURATION VALUES

CAMM selects duration values according the tempo of the melody. Tempo is provided by the
user. There are three options for tempo: slow tempo, medium tempo and fast tempo. See below an
example of a set of duration values for the slow tempo.

fig_de_tempo (

lento, [semibreve,semibreve,semibreve,semibreve,semibreve,
semibreve,semibreve,semibreve,semibreve,semibreve,
minima_pontuada,minima.pontuada,minima pontuada,
minima_pontuada,minima_pontuada,minima_pontuada,
minima._pontuada,minima,minima,minima,minima,minima,
minima,minima,minima,minima,minima,minima,minima,minima,
minima,minima,minima,minima,minima,minima,minima,minima
minima,minima,minima,seminima_pontuada,seminima_pontuada,
seminima.pontuada,seminima_pontuada,seminima,seminima,
colcheia.pontuada,colcheia,semicolcheia_pontuada,
semicolcheia,fusa_pontuada,semifusal).

| Simpésio Brasileiro de Computacio e Misica

113

output - melody generated by CAMM according to the knowledge base
nodifications in the knowledge base
CAMM
Knowledge inputa Knowledge Inference
T .
Enginner Base e Machine
composer
sugestions
L Composer

Figure 5: Knowledge Base modificiation schema, according to the needs of the composer

In the above example, extracted from CAMM’s knowledge base, we can observe that some
duration values, or duration figures if you like, are repeated and that, for this reason, they will have a
bigger probability to be selected. For this reason it is more likely that longer duration values will be
. selected more often, originating a slower tempo rather than a fast one.

CAMM’S grammar also features a mechanism for providing bars with duration figures. For
_each bar it considers the time space still available, the tempo especified by the user and what is available
" in the knowledge base in the terms of valid duration figures and rhythmics cells. As the available time
_ space in a bar decreases CAMM selects those time figures which still fit. CAMM’s grammar was designed
%uch that it avoids to attach very short durations to notes too often. This is not desired here specially
‘when the melody’s tempo is to be slow. The same rule is also considered when the melody’s tempo is
to be medium or fast. Notes with short duration (relative to the tempo of the melody) are avoided and
_ notes with long duration are encouraged. This is so because we want to avoid begining a bar with, let us
say, long duration notes and dratically ending it with short notes.
Speaking in terms of numbers, the algorithm works as follows: If the total duration of a bar is
_ other than 64 (which corresponds, let us say, to four quarter-notes) then it will try to select a suitable
figure. In the case of a slow tempo, for example, in order to select figures that are not too short it tests
if the difference between the total size of the bar and the space still available is bigger than or equal to
. 8 (eight-note). Eight is the value of an eight-note which is the smallest allowed duration figure for the
rest of the bar. Following this rule, CAMM will only choose figures whose values are bigger than or equal
to the eight-note to fill the bar. The same is valid for the medium tempo and for the fast tempo. The
difference is that for a medium tempo the shortest value is 4 i.e. (a sixteenth note) and for the fast tempo
the shortest value is 2 (thirty-second note) (see Fig. 6).

5.2 RHYTHMIC CELLS

The rhythmic cells, or rhythmic patterns, are sets of pre-defined duration figures stored in
CAMM'’s knowledge base. In the current version the knowledge base has stored 75 different rhythmic

114 XIV Congresso da Sociedade Brasileira de Computacio

12 16 16

48

711

8888

.
~——
Tl
~——
s

~ =

I e

1111

1

Notes with duration

interval too big for

the same andamento.
Practioning at the

ond of the ccapass

Practioning at the
end of the compass

Figure 6: The problem of finding right the duration value for the end of the compass.

cells. These cells are different of each other and may be used for all. Each cell is also characterized for
its own duration, which is the sum of the durations of its duration figures.

The statement bellow (one of the 75 rhythmic cells) obtains the set of rhythmic cells through
the predicate andamento_cel.rit, according to the parameter supplied by the user. In this manner, the
Conj_cel_rit variable receives the group of cells related to the referred tempo. The random.pick predicate
randomically chooses just one element from the list and passes this element to the dur_celular predicate,
which computes the total size of the rhythmic cell. The Duracao_celular variable is instatiated with the
total duration of the chosen cell. If the size of the chosen rhythmic cell is bigger then the available space
left in a bar, then the system selects another cell that fits.

células_ritmicas(P1,P2,P3,Cont)->

{ andamento_cel.rit(P2,Conj.cel.rit),
random.pick(Conj.cel.rit,X), dur_celular(X,Duragdo_celular),
Dur_Tot is Durago_celular + Cont, Dur.Tot =< 64 },
célula_rit(X,P1,P3), continua_compas(P1,P2,P3,Dur.Tot).

6 THE PAUSE PARAMETER

Pauses are manipulated by the grammar in a similar way to notes (seeFig. 8). The difference
is that notes are entities outside time at the moment of selection. Only afterwards a note is mapped to a
duration value (which is also given by the gammar). On the other hand, pauses don’t need to be mapped

| Simpésio Brasileiro de Computacio e Misica

115

|.:J|l.ﬂzﬂ|.J?ﬂ|J‘..|
NN S T

RHYTHMIC CELLS

VRN

5 i

00 T O O

Figure 7: Rhythmic Cells

to a duration value because their representation already includes an inherent duration value.
Pauses should not accur too frequently in a melody. This could produce to many gaps in the
melody. Nevertheless, pauses should exist, in order to strength the rhythmic sensation of musical phrases.

7 THE INTENSITY PARAMETER

Another important aspect of a melody is the expressiveness given to its performance. This
aspect has to do with the music dynamics, i.e., whether it is played in a loud, medium or quiet way. So
CAMM also maps an intensity value to each note of the melody. The user also informs the system the
intensity he or she wants. For example if the user wants a loud melody, then most of the intensity values
will be within a loud bandwidth of values.

For a better representation of the intensity parameter with which the melody notes must
sound, the intensity values are divided into groups that correspond to a particular kind of expression.
For example, for loud melodies values within a bandwidht of loud intensity values will have a higher
probability to be selected than any other values.

8 PRESENTATION OF THE GENERATED MELODY

Once CAMM creates a melody according to the parameters provided by the user, it can present
it in two ways: textually and coded. Both outputs are displayed in the screen. Alternatively, melodies
can also be saved in a MIDI file (Ratton, 1992).

The textual presentation was devised to ease the visualisation of the MIDI file and the notes
played by the instrument. Through this textual presentation, any user, with a minimum understanding
. of music, can transcribe the output to traditional music notation when writing larger pieces of work by
hand. This task could also be automatically accomplished by sequencer with music notation facilities.

116 XIV Congresso da Sociedade Brasileira de Computagio

Paramater supplied
to the systea

Siow Predicate that Predicate that
andamento chooses between chooses with
note and pause paudse isto be
use:

Pauses arranged according to the andamente

Fast Medivm Show
p_minima p_semifusa p_semicolcheia p_seminima
p_fusa p.colcheia
p_colcheia p_seminima p_semibreve

Figure 8: Hence, the pauses are also chose by a randomic predicate.

We illustrate below a melody in its textual form. Here the user inputted: note A, slow tempo
and loud intensity.

di_minima_nf gi_minima_f / ci_minima_f ebi_minima_f /
gl.seminima_pontuada_mf p_minima ebi_colcheia_? / ci_minima_f ai_minima_f //
el_minima_f ebi_colcheia_f di_seminima_f al_colcheia_f /

cl_minima_f d1_minima_f //

¢l minima_f p_seminima ci_colcheia_f al_colcheia_f /

ci_minima_f ci_minima_f //

p.minima di_minima_mf //

al_minima_f gl _colcheia_f gi_seminima_f al_colcheia f //
c1_seminima_pontuada_mf di_seminima_pontuada_f c1_semicolcheia_pontuada_f
gl_semifusa_mf el_semifusa_f ci_colcheia_f //

ebl_minima_f di_colcheia_f di_seminima_f ai_colcheia_f //

9 MIDI IMPLEMENTATION

In the MIDI file, only the codification for note duration is not implemented according to the
standard MIDI specification (Ratton, 1992) (Yavelow, 1992). Our program that sends MIDI codes from
files to the synthesiser uses a different technique for MIDI control, which is not aimed to be fully described
isr}rthis paper (Korg, 1992). This program has been implemented in GFA Basic, running in a ATARI 1040

| Simpésio Brasileiro de Computacio e Misica

117

NB FT FE
Pltch Time Intenslty
cl seminima f

Predlcate \ /

that join

the musical ———= ¢l _seminima_f

elements

N
nota_exp_dur After the note construction to

be completed It is Inserted In
the melody list,

/¢b1_semibreve_f/gl_seminlma_mf f1_semlnima_f ¢i_seminima_{ ...

L

Figure 9: Mapping between musical elements.

The file produced by the grammar has the following format:

< note > < duration > < intensity >

- where each of the three elements are formed by three decimal numbers.

The Amount of time between a message NOTE ON and a message NOTE OFF is specified
by aloop in the program, which executes a wait function, CAMM performs this loop as many times as
- required to delay the program’s flow.

The following example illustrates how the program send data to the MIDI interface using the
OUT command (of ATARI’s GFA Basic):

OUT 3,144
OUT 3,060
OUT 3,127

These three commands send through the MIDI channel 1 (represented by the MIDI code 144)
- note C (represented by the MIDI code 60) with maximum intensity i.e. MIDI velocity (represented by
_ the MIDI code 127). The number three, in each command, is used because it addresses the computer’s
output port 3. Any MIDI synthesiser may be used to play the generated melodies. Any MIDI instrument
that owns the MIDI IN and MIDI OUT ports may be used to reproduce the generated sounds.

118 XIV Congresso da Sociedade Brasileira de Computacao

10 Conclusion

In this paper we introduced CAMM, a computer implementation of a grammar for automatic
melody composition. In this work we wanted to show that the computer can compose interesting melodies
using a simple grammar which defines their style. What is different in this work is that we use declarative
programming for defining the grammar and for implementing the engine for melody composition. We
believe that declarative programming is a very good way for communicating ideas to the computer.
Rather than describing “how” the computer has to compose melodies,i.e. procedural programming, one
needs only to describe “what” the machine has to do.

Although it in its infancy, CAMM proved to be a good starting point for future developments.
Perhaps the next step is to provide a machine learning mechanism for automatic contruction of grammars
either from a set of examples or from user interaction. Also we plan to devise an interface aimed for
enabling easy communication between the musician and the computer. At the moment the user still have
to master Prolog in order to edit the grammar.

We have been effectively using CAMM. A Porto Alegre pop band has stored several CAMM
generated melodies in a MIDI sequencer which are triggered during the show. Here the computer acts as
another musician in the stage.

REFERENCES

ADOLFO, Anténio. (1983) O Livro do Misico: Harmonia e Improvisagdio. Rio de Janeiro: Lumiar
Editora.

ARITY Corporation. (1986) The Arity/Prolog Programming Language. ARITY Corporation.

COPE, David. (1987). An Expert System for Computer-Assisted Composition. Computer Music Journal,
11/4, 30-46.

FARIAS, Nelson (1963) A Arte da Improvisagio Pare Todos os Instrumentos. Rio de Janeiro,Lumiar
Editora.

FRITSCH, Eloi Fernando. (1993) Um Estudo Sobre Misica & IA e a Implementagdo de um Sistema
Especialista Tedrico Musical. (Trabalho individual 301). Porto Alegre: CPGCC da UFRGS.

GIOMI, Francesco. (1989) LIGABUE, Marco. Computacional Generation and Study of Jazz Music..
GOMES, Luis Carlos Elias (1988) Som Trés - Pequeno Diciondrio MIDI. Sao Paulo: Editora 8 Trés.

KORG Incorporation. (1992) Music Workstation: 01/W FD Ouwner’s Manual Tokyo, Japan: KORG

Incorporation.

MIRANDA, Eduardo Reck. (1990) Misica e Inteligéncia Artificial Paradigmas e Aplicagées. Porto
Alegre: CPGCC-UFRGS. (Trabalho Individual, 200)

MIRANDA, Eduardo Reck. (1994) From Symbols to Sound: AI Investigation of Sound Synthesis. in
Contemporary Music Review, in press.

MOORER, J.A. (1975) On the segmentation and analysis of continuous musical sound. Stanford Cali-
fornia: RepStan-m3, Dpto of Music, Stanford Univ.

PREDIGER, José Aluisio. (1993) Blues, Harmonia e Improvisagio Musical. Porto Alegre: Prediger
Academia, Notas de Aula.

RATTON, Miguel Balloussier. (1992) MIDI: Guia Bdsico de Referéncia. Rio de Janeiro: Editora Cam-

| Simposio Brasileiro de Computacio e Misica 119

puS.

ROADS, Curtis. (1985), Research in music and artificial inteligence. Computing Surveys, Cambridge,
¢.17,n.2.

Roeder, John. €1989) A Prolog Program for Music Segmentation , School of Music, University of British
Columbia, Musicus 1/ii, Dezembro.

yAVELOW, Christopher. (1992) Music & Sound Biblle. San Mateo,California,: IDG Books WorldWide,
Inc.

VICCARI, Rosa. (1992) Ferramentas para Inteligéncia Artificial. Porto Alegre: CPGCC da UFRGS
Notas de Aula. '

| Simpdsio Brasileiro de Computacdo e Misica 121

Interfaces Musicais - Um problema antigo

Domingos Aparecido Bueno da Silva
Mestrando em Antropologia Social
Progr.Pés Grad. em Antropologia Social
Universidade Fed. de Santa Catarina
Florianépolis - 8.C. - Brasil
Cx. P 476 - CEP 88010-970
cso3dab@ibm.ufsc.br

Resumo

O interesse deste ensaio ¢ tentar compreender até que ponto a notagio
musical, enquanto um sistema de signos que permite representar
acontecimentos sonoros (limitados), deveria ser pensada n#o somente em
termos de suas caracteristicas intrinsecas, mas também enquanto uma
interface entre 0 homem ¢ a sua criagiio.

As questdes referentes a esta inter-agfio/feréncia que serfio levantadas no
decorrer do texto, procuram incentivar uma discussfo mais aprofundada &
cerca da nossa relagio com o meio informatico enquanto interface, levando-
se em conta que, embora criativa ¢ original, tem em seus principios constitu-
tivos, uma dependéncia muito grande com esta outra, a notagio, com todas
as implicag®es ¢ limitagdes que lhe so caracteristicas.

A procura de um pensamento musical

Nesse texto, assumo a premissa de que devemos ampliar a discussfio para além das definiges
bindrias simplistas quando referimo-nos & cultura de outras sociedades, no nosso caso 4 mésica, (¢
por outras entendidas todas as culturas agrafas ¢ n#o ocidentais), quase sempre colocada em termos
etnocéntricos do tipo nbs/eles, desenvolvido/primitivo, sempre com um julgamento de (des)-valor, sc
quisermos efetivamente penetrar com mais profundidade no universo do acontecimento sonoro.

Nossos conceitos de desenvolvimento € progresso nos colocam frente a situagdes ¢ definices em
que o outro lado aparece desprovido de sentido ou de qualquer forma de logica formal. A realidade,
no entanto, ¢ de que esses so os nossos padrBes ocidentais de logica, progresso desenvolvimento ¢
mesmo linguagem, assim como so exclusivamente ocidentais a perspectiva, o racionalismo, o posi-
tivismo, o materialismo ¢ o individualismo. O conceito de Tonalidade, assim como todas as suas
ramificacdes dialéticas (atonalismo p. ex.), ¢ exclusivamente ocidental ¢ totalmente depende de um
‘meio’ simbolico especifico para desenvolver-se.

Quer me parecer entio que a utilizaclio ¢ o desenvolvimento no nosso cotidiano de compositores
¢/ou programadores, de samplers, filtros, aplicativos, interacio ¢/ imagem, estaria um tanto com-
prometido enquanto interface, pela propria maneira como percebemos © universo sonoro, que em
Gltima instdncia, ¢ condicionada pela cultura.

122 XIV Congresso da Sociedade Brasileira de Computagio

A grafia e a notagao musical

As questdes ligadas as diferencas entre as culiuras sempre foram alvo de interesse dos principais
pensadores da histotia da humanidade. As teorias mais modernas dispensam quaisquer julgamentos
de valor entre as sociedades, posicionando a cultura no centro das especulacdes.

Entre os antropologos, foi Lucien Levy-Bruhl, filosofo e antropodlogo francs, que primeiro
coloca essa questio nestes termos, sugerindo que a explicacio das diferencas entre culturas pudesse
ser entendida A partir "do pensamento crindor e dos processos mentais que, em cada e todas as
sociedades, determinam sua cultura”, distingnindo entre pensamento logico e pré-logico.

T4 em 1962 um outro francés, Claude Levi-Strauss publicava "O pensamento Selvagem" onde

delineava esta questiio das diferencas em termos de modos de pensar, reconhecendo duas instincias

basicas: 0 pensamento selvagem, (concreto, sensorial e sensivel), e o pensamento domesti-
cado,(abstrato € racional), criticando Levy-Bruhl no sentido de que cada sociedade teria uma logica
propria. Levi-Strauss fala-nos em termos de dois niveis estratégicos, sendo "um muito proximo da
intuigio sensivel e outro mais afastado”, porém nfio nos dando nenhuna pista de em funcllo de que
se dariam esses dois niveis.

Serh o inglés Jack Goody no seu fivio "A domesticaglio do pensamento selvagem" que,
retomando a problemética levaniada por seus sucessores, ¢ em especial Levi-Strauss, que parece ter
chegado a0 centro da questlo. Sua discussiio da problemética situa-se em como 08 modos de pensar ¢
as formas de pensamento mudaram no €spago € no tempo. Vai demonstrar que sfo os instrumentos
culturais que disple uma determinada sociedade e nio outra, 08 determinantes de "estilos cognitivos,

~ de modos de pensar o universo”.

Niio é nenhuma novidade que foi o surgimento da esc ita o grande divisor de Aguas da historia da
humanidade. Em nossa civilizaco ocidental (e grafica) nio hé nenhuma area em toda atividade hu-
mana, principalmente a nivel do pensamento, que no tenha sido profundamente afetada pelo surgi-
mento da grafla. A passagem do universo mégico ao cientifico, & organizacio do estado ¢ da econo-
mia (a burocracia), do coletivo ao individual, foram mudangas tornadas possiveis, necessarias e por
vezes, consequéncia desta nova interface.

Para Elsje M. Langrou, a abordagem de Goody ¢ nova quando “entra mais fundo nas categorias
de entendimento de povos com & seim escrita. Uma critica e uma andlise sisternatica de uma
informac#io supde um distanciamento que 6 a escrita possibilita, e esta objetivaciio vai acompanhada
de uma esquematizacko em listas € diagramas que abstracm e opde, de uma maneira "coerente ¢
congistente®, fendmenos que, na fugacidade do fluxo do tempo, nio aparecem desta maneira
esquematizados e simplificados ...".

O mesmo se 44 em relagio A mbsica. A possibilidade de registrar sons numa partitura, ou seja, 0
aio de registrar graficamente um som, prive-the de suas caracteristicas eminentemente sensoti-
ais/temporais (diferentemente de um quadro, p. €x., um acontecimento sonoro tem uma duracio de-
limitada no tempo), e Ihe confere um ouiro status, muito mais abstrato/estatico, matéria basica para o
sen desenvolvimento posterior.

A partitura, da mesma maneira que a escrita em relaciio A fala, estanca o fluir dos sons,
permitindo entdio & busca de elementos de contradigfo e redundncia, a harmonia, o contraponto, &
orquestraclio, a reflexfo sobre o desenvolvimento € & forma. £ claro que todas estas caracteristica
seriam impossiveis de serem trabalhadas de uma maneira puramente auditiva, ainda mais em pegas
relativamente longas.

O paralelo com a grafia € necesshrio pois, apesar da notagio ser muito mais recente, as
conseqlienies resukiantes de seu surgimento jo demonstradas sugerem grandes semelhancas,
principalmente no sentido em que ambas criam novos "estilos cognitivos" e modos diferentes de
pensar o mundo. 1ss0 permite-nos algumas especulactes.

| Simpésio Brasileiro de Computagdo e Misica

123

Por exemplo, no caso da escrita musical, se ¢ atra
mplo, : N vés da represeniaclo grdfica do:
pode-se manipuld-los, gﬁo seria mmbém através dela que eles seriam inteﬂonﬂn{?;roc:szgggsgué
mesm(;e l:r(: caso da audigo interior (ouvido interno), nio haveriam categorias aprioristicas definid
c_omo L peramento, escg,las, modos ¢ o "tempo”, que novamente nos remetem i I
simbolico que é dado pela interface? i e
O computador, assim como todos os dispositi
, positivos para producio/reprodu i
ca.]m‘ en;e a relacfo dq homem com o universo sonoro. Pensado enqgantocﬁom: emst(;r:xfazleteri;ad s:
;m“hpmrio m 3;10111: gggggee(gmr:ﬁm) paxacdom;;mcar—se com O usuario, que por sua vez tetr? 0 seu
rof tedrico, somada vérias tecnologias "indispensdveis” a um estadi
gigsx!l dc::(ﬁm}g:;sﬁzeonzg:zzsatnnpedﬁn;m, analdgico/digital, multicanal, etc), ele acaba, creio :u :(l)(;
suposto pensame; i ia i ir cristivam
B s e e po pe nto musical, que deveria interagir cristivamente
No nosso caso, minha hipotese ¢ a de que a interfr i i
. ace i
cabe 1 prosinghio eestca q assumiu uma parte muito maior do que lhe
” ui)omo elemento de comparagio podemos utilizar a mésica européia do século X e o barroco do
o va Leo (}::ﬂnnto a notagio alteroq as suas caracteristicas. Portanto, 05 meios de que se dispde
msepsee mig(r)n r?ﬁo gﬁl:)er_ anéa do conhecimento humano alteram radicalmente os modos de operé-lo.
m - 0 i ;
Nesse & génuos nem inocentes ¢ atuam mesmo como co-criadores no processo
Dat a importincia dos modelos interativos, desde que eles incluam possibilidades de interagir

com outras estruturas de pensamento, princi
o ool e s de pe! . , principalmente aquelas em que os padrdes do cravo-temperado

BIBLIOGRAFIA

Goody, J. (1988) Domestica¢dlo do pensamento selvagem. Lisboa . Editoral Presenca.
Lag!‘ou, Else M. (1992-93) Caminhos, duplos e Corpos, PPGAS-USP- Sio Paulo
Lévi-Strauss, C. (1962) La pensée sauvage. Paris: Plon. '
Léyl—Bruhl, L. 4 mentalidade primitiva. S&o Paulo. Zahar.

Peirce, C.S. (1977) Semiética. S3o Paulo. Ed. Perspectiva S:A., Estudos,

| Simpésio Brasileiro de Computacio e Mdsica

125

MODELOS MATEMATICOS E
COMPOSICAO ASSISTIDA POR COMPUTADOR,
SISTEMAS ESTOCASTICOS E SISTEMAS CAOTICOS

Mikhail Malt
IRCAM
mmalt@ircam.fr
1,Place Igor Sravinsky
75004 Paris
France

ABSTRACT

Este artigo propde uma primeira reflexfo sobre a nogfo de sistema , as relagbes
entre modelos estocasticos, modelos cadticos ¢ a escrita musical, em CAC, & partir da
andlise de dois exemplos composicionais : Actrinou! para piano solo e de Lambda
3.992 para violdo e sintetisador controlado por computador. Estas pegas foram
formalizadas utilisando-se o paradigma ‘sistema’ , dentro de um contexto de Composigéo
Assistida por Computador. Sendo que, ‘Actrinou’ usa este paradigma numa visdo
estocdstica, enquanto ‘Lambda 3.99” foi composta num contexto de sistema cadtico.

1.INTRODUCAO

No contexto da Composi¢io Assistida por Computador a nogéo de sistema pode
ser um instrumento precioso para a formalizago de diversos processos musicais.

A grande maioria das praticas de composigfo assistida por computador (e de
composi¢io em geral) repousa sobre um protocolo3 bastante regular :

a) Geragfio de um material pré-composicional “a-temporal”
(“hors-temps” commo diria Iannis Xenakis)
b) A articulag@o deste material inicial e a associagdo de uma estrutura ordenada,
c¢) Definigdo de fungdes temporais para percorrer a estrutura “a-temporal”
ordenada, de modo a ordené-la “temporalmente”.

Este protocolo é nada mais, nada menos que a construgdo de um sistema a estados
discretos.

De outro ponto de vista, inexiste atualmente uma reflexdo profunda sobre as
relagOes entre as caracteristicas conceituais e técnicas de certos modelos e a escrita
musical que se origina a partir do uso destes. Especialmente no que diz respeito ao uso
de modelos estocasticos e cadticos, a visdo de muitos compositores é ainda bastante
ingénua, nfio indo além do uso destes modelos como algoritmos composicionais
(BIDLACK, Rick (1992)) e da proposi¢io metaférica sugerida pelos nomes dos
modelos.

ICriada na “Academie d"été * do IRCAM em julho 1993

2criada na Tribuna Internacional de Compositores da UNESCO, PARIS 1994

3Este protocolo baseia-se na observacao das praticas composicionais dos seguintes
compositores: Tristan Murail, Gérard Grisey, Claudy Malherbe, lannis Xenakis, Brian
Ferneyhough, Alessandro Melchiore, e de duas turmas de compositores participantes ao
“Cursus d'Informatique e Composition Musicale “ do IRCAM, no qual participo dando
semindrios sobre a composicdo assistida por computador (Para uma familiarisagéo com as

MrAtinae ramirrcinimaraie Ao alai e Aactac A vmoidaroaa sanmonibharmae < laitiira da CRICE Y

126 XIV Congresso da Sociedade Brasileira de Computacio

2.Sistema dinamico discreto

Definiremos S como sistema dindmico 2 estados discretos como sendo uma entidade
possuindo:
-Uma funggo de transigdo G que determina a cada instante 0 estado assumido pelo

sistema, aonde G é uma fungio do tempo:

G =G (®)
e
- um conjunto finito E dos estados possiveis que pode assumir o sistema, aonde et
designa o estado assumido a cada instante “t” calculado a partir da fungdo G.
E = {eo,e1,€2,€3, vess€n}
Cada estado €j , sendo uma classe de equivaléncia, pode por sua vez ser um sistema,
com seus préprios estados internos e suas fungdes de transigio. Um sistema finito &

estados discretos S serd entfio definido como sendo o conjunto formado por uma fungéo
de transigio G (t) e um conjunto de estados E:

S = {E,G(1)}

3.Transiciio entre o formal e o musical

Musicalmente poderemos interpretar a formalizagdio acima como sendo parte de
um protocolo composicional“:

a) Inicialmente o compositor gera o seu material pré-composicional.

b) Como segunda fase o compositor organiza este material segundo vérios
parimetros perceptivos e/ou 16gicos. Nesta fase o compositor discretisou o seu material
pré—composicional e associou-o A uma, ou vérias estruturas ordenadas, criando o

conjunto I dos estados possiveis que poderd assumir o sistema.
¢)Finalmente o compositor vai construir caminhos través deste material para
gerar um processo musical, o que significa que o compositor ira définir uma fungfo de

transi¢io G que determinard como percorrer o conjunto des estados criados.

O dltimo ftem é de grande importancia pois revela uma das grandes preocupagdes
do compositor, que é o de definir caminhos, diregSes que serdo tomadas pelo material.
Esta preocupagdo se faz sentir ao nivel da escrita musical em compositores como Tristan
Murail, que calcula com muita precisio vArios processos, altamente direcionais, que
seguir seu material; e de Brian Ferneyhough que constréi suas matrizes de estruturas
altamente hierarquizadas, que ele percorre segundo algoritmos que the sdo préprios.
Num caso como no outro estes Processos nunca sio deixados & vista, as pistas sdo
apagadas, seja pela introdugdo de ruido (num sentido estocastico) ou seja pela quebra das
regularidades calculadas.

4Gostaria de lembrar que muitas destas reflexdes podem ser aplicadas em casos particulares da
composigao mais tradicional ,mas queestamos estudando este protocolo dentro de um
contexto de C.A.C., isto-é, composic8o assistida por computador, o gue faz com que o roteiro
da elaboragio composicional tome rumos particulares. Além do que, deixamos de lado,
voluntariamente, uma primeira fase que seria de elaboragdo conceitual, para nos concentrarmos
sobre a fase diretamente ligada & manipulago do material com a ajuda do computador. Em vista
destes aspectos gostaria de convidar o leitor a ler os artigos de DUFOURT, Hugues (1981)- €
BOULEZ, Pierre (1981) sobre a influéncia do computador no pensamento composicional. .

| Simpésio Brasileiro de Computacio e Misica

127

4.Dois exemplos de aplicacio

das dualsh;)set:;:mrv?: a seguir 0s gorllceitgs mais importantes na composigfio e formalizagdo
- Mas € necessdrio lembrar que as indicagd ;
A1 Oes que daremos j0 si
uma andlise detalhada de cada mas indicacd §oe aqu1 1nao sao
peca, mas indicag¢les gerais que pod i
s . €m nos
compreender o uso do conceito abstrato de sistema em composigﬁo mpusical ajudar a

4.1.0s conceitos musicais

Lamb(}im3d9o9s f<(:)(i)noceuist((;sd m.oth).re?i que lg;xiou a composi¢do de Actrinou e de
d . a idéia de “polifonia virtual”. Este conceit
0 . o amplame
%(;rélﬁecxdi% éiiz S)éig:scés é?:(sjlecos 1§ o quet regeu a composigfo das suites e sonatas de J née
ch. aplicar este conceito nfo somente a not 3 iras
mais elaboradas, de modo que i j i equoncial pudessemes
elabe S, partir de um jogo estritamente sequencial
a par ! udessem
dife :tlﬁl:fjao a;;ldmva de uma polifonia de fluxos, ou seja uma polifonia de estrll)lturas Es(t);i
q 0s fluxos auditivos foi estudada exaustivamente por Me ADAMS, Steve et A
, .

Il JHF

= forma 2 O:!ormaa flgura 1

@ = forma 1

Par . . .
gestos) g ea ;iﬁldermos coneretizar este conceito precisamos construir microformas (ou
que pudessem ser reconhecidos como entidades auténomas e diferenciadas. Em

fungao destab restrigdes cada esto fOl ldeallz ad() de maneira a ter suas caracteristicas
¢ g

Py . fsti

pIOp] 1as (Veja como exe]llplo as flgu] as2ae 2b).

a) uma morfologia de frequéncias

b) uma articulagao, ’

¢) uma dinAmica,

d) uma estrutura temporal local

€) uma textura prépria que decorre da conjungio dos

pardmetros anteriores.
mélodie
(rw)
mf

figura 2a

nuage

128 XIV Congresso da Sociedade Brasileira de Computacdo

| Simpésio Brasileiro de Computacio e Misica 129

4.2.0s conceitos formais

Duas idéias formam a base para a formalizaggo destas duas pegas:
a) B possivel representar a evolugiio de um processo musical por um sistema dindmico.
b)Todo processo musical pode ser analisado como sendo a evolugfo de vérias formas,
independentes, tendo cada uma destas uma evolugdo prépria.

No nosso caso isso significa, definir um conjunto B dos estados possiveis e

definir uma fungio G (t).

mp

>

ff

W —— T fff
----- figura 2b ~
mf

4.3.Actrinou

Para Actrinou nosso conjunto K era constituido de sete gestos de base (veja figura
2) . A tinica transformagio que cada gesto poderia sofrer era uma simples translagdo no
espago das frequéncias (transposigdo). A nossa fungio G (t) (estocéstica) era fungdo
de um vetor de probabilidade calculado A partir de sete outras funges (determinadas

raficamente) que indicavam a cada instante “g” a probabilidade do sistema assumir um
estado em particular . Neste caso particular tinhamos:

G (t) = [fnotes(t) 9 facordes(t) ,ftrllo(t) ,ftremolo(t) ,fRW(t) ,fnot.rep(t) ,fnodul(t)]

onde cada funggo fgesto(t) ¢ definida graficamente (veja as curvas gréficas na figura 4).

mp
A figura 4 representa uma janela do programa grafico “Patchwork™, na qual foram
caleuladas as diferentes secgOes da pega.
f O uso destas fungdes auxiliares s¢ mostrou inevitavel, pois uma das propriedades
U . Ti de base dos modelos estocdsticos mais simples (excluindo os modelos markovianos) € a
auséncia de memdria. Do ponto de vista composicional esta “amnésia” era perturbadora,
— & —— - pois néo permitia um contrdle do processo. A introdugdo destas fungOes auxiliares
g— gl e T2 permitiu, pelo menos A um nivel global um maior contrdle sobre a evolugdo de cada
o [P gesto, simulando uma memdria (normalmente ansente) pela variagfo, no tempo, das
] Mm densidades de probabilidade de cada gesto. Para gerar o tempo global da peca usamos
s o uma interpolagio entre um tempo gerado por uma distribuigao exponencial de densidade
AR ST e - baixa (approximadamente .5 eventos por unidade de tempo) € uma distribuigfio gaussiana
i e . de média de 150 milésimos de segundo. Este tipo de interpolagdo entre modelos permitiu
q também de gerar o aspecto escrita musical de uma maneira mais flexivel.
P T T
L
p Tgrande condensati HE
}W - NG TES ACCORNGFRRRh THILLEGPw ook TRENOL0S
14 g-ran
__/ 0 J|100 0 |10 0 |00
T-l Fempo Global 1° ni L. inth-ouariones
P nivel T2 Tempo Local 2° nivel @
4
figura 3
bpf o B PPT o o gl ppf o B
Desta primeira formalizagiio poderemos deduzir a existéncia de duas camadas E‘JI! figura 4
ibuffer

temporais superpostas (ver figura 3):

4[Tist
segapd

1{@ Tist |
A

a)Um tempo local, definido pelas caracteristicas estruturais de cada gesto, e

b) um tempo global que gera a evolugdo das nossas microformas

ﬁ;lemAd.este conceitos gerais, existem ainda outros que geraram o detalhe dos campos
arménicos e do ritmo, cuja a andlise nfio serd abordada neste artigo.

50 programma Patchork € um programa, desenvolvido no IRCAM, destinado A cOMpOSICao
aasiatida nor computador. Foi idealizado pelo finlandés Mikae! Laurson e sua versao atual foi

130

XIV Congresso da Sociedade Brasileira de Computacio

4.4.lambda3.99

Basicamente, lambda3.99 segue 0 mesmo processo de Actrireun. Inicialmente

definimos o conjunto E 3 partir, nio mais de gestos estdticos, mas a partir de classes de

equivaléncia. Por exemplo um dos estados possiveis era o que chamamos de

(g M kb M M :
apogiatura”, este estado continha um conjunto de gestos ordenados evoluindo de uma

“apogiatura” simples 2 uma nuvem estocistica em torno de uma nota central (ver ffigura
5):

figura 5 <R TSy

»

) Em seguida, um ponto importante era a escolha de uma fungio de transi¢io que
tivesse propriedades interessantes do ponto de vista musical.Uma propriedade que nos
interessou nos sistemas caéticos sdo certos conjuntos de valores gerados por solugdes
numéricas de equagBes diferenciais, chamados atratores estranhos (ver Ruelle D. (1980) in
CVITANOVIC, Predrag (1989)), como o grafico da figura 6. Uma das propriedades destes
conjuntos de valores é a de possuir simetrias internas (PEITGEN, H. O. ; JURGENS,
Harm'ut; SAUPE, Dietmar (1993) & CVITANOVIC, Predrag (1989)-), mas de uma
maneira que lembra a escrita musical: uma oscilagfio entre memoria e informagio. Ndo
discutiremos aqui do porqué destas simetrias, visto que este sujeito se acha explicado
detalhadamente na bibliografia citada.

Lt

figura 6

Um conjunto de valores como os da figura 6 acima tem um certo interesse, mas se
quisermos orientar o nosso processo deveremos transformé-lo, achar uma estratégia que
possa dar-lhe uma diregéo; por esta razdo utilizamos uma fungio da forma:

G(1) = o(t)F(t) + a(1)|

aondef,

F(t) = F(t -DA[1-F(t-1)]

F(0) = 0.512 ’
A =399
U (t) == fator de contragio
Ol(f) == fator de deslocamento

6A equaggo recursiva F(t) é conhecida também como equagéo logfstica.
Te()-valor inicial para as interactes de F(1) e lambda()) é o coeficiente de turbuléncia da

| Simpdsio Brasileiro de Computacio e Miisica
LAl

131

isto-é aplicaremos uma transformag#o, localmente linear , sobre este conjunto de maneira
a podermos dar uma diregdo a este processo e manter boa parte das simetrias de origem:

figura 7

Este mesmo procedimento serd entdo aplicado a cada classe de equivaléncia, de
maneira a que durante o processo teremos estados que evoluirdo nfio sé por translagio
mas que assumirdo diferentes morfologias dentro de uma l6gica de proximidade
perceptiva.

5.Conclusdes

O paradigma sistema poderd ser um bom modelo para formalizar varios processos
em composigio musical assistida por computador, pois permite uma grande flexibilidade

pna escolha do material pré-composicional (construgdo do conjunio), e na escolha da

fungdo de transigio 5 (£). A definigdo da fungio de transi¢io é um dos pontos vitais
deste paradigama, pois € esta fungdio que determinara o desenvolvimento do processo
modelizado. Como consequéncia imediata esta mesma fungfo serd portadora de
informagdes sobre a forma do processo, na medida que entendermos que a evolugio
dinamica dos elementos musicais participa naquilo que chamamos “forma”. E, finalmente
poderemos dizer que um uso conseqiiente da composigio musical assistida por
computador deveri passar, obrigatoriamente, por um desenvolvimento de um solfejo de
modelos, que permitird de fazer a ligagdio entre as caracteristicas dos modelos e as suas
potencialidades musicais.

6.Referéncias
1. AMES,Charles (1991) - "A Catalog of Statisticcal Distributions: Thechniques for

Transforming Random, Determinate and Chaotic Sequences” in Leonardo Music Journal, vol 1, n® 1, pp.
55-70.

2. BARNSLEY, Michael (1988)- Fractals Everywhere, Academic Press, Inc.

3. BIDLACK, Rick (1992)- “Chaotic Systems as Simple (but complex) Compositional
Algorithms”, in Computer Music Journal, vol 16, n°® 3, Fall 1992,

4. BOULEZ, Pierre (1981)- “L’in(dé)fini et I’instant”, in Le compositeur et [ordinateur,
IRCAM, Paris.

5. CVITANOVIC, Predrag (1989)- Universality in Chaos, Adam Hilger, Grande -Bretagne.

6. DELATTRE P, (1985), Systtmes de transformation, in Encyclopaedia Universalis, France

7. DELATTRE, P.(1976), Langage interdisciplinaire et Théorie des Systémes, in Structure et

= Y < I T o™ T o M

132 XIV Congresso da Sociedade Brasileira de Computagdo

8. PODGE,C. and JERSE,T.A. (1985), Computer Music, Schirmer Books N.Y. .

9. DUFOURT, Hugues (1981)- “Les difficultés d’une prise de conscience théorique”, in Le
compositeur et L' ordinateur, IRCAM, Paris.

10. GRISEY, G. (1989), “Tempus Ex Machina”, in Entretemps n°® 8, Paris, France.

11. LORRAIN, D. (1980), Une Panoplie de Canons Stochastiques, Rapport IRCAM-n® 30, Paris.

12, MALT, Mikhail (1991)- Trois aspect de formalisation dans Achorrispsis de Iannig Xenakis ,
Mémoire de D.E.A.,sob a orientagio de Huges Dufourt, EHSS-Ecole des Hautes Etudes en Sciences

Sociales et IRCAM-Institut de Recherches et Coordination Acoustique Musique.

13. MALT, Mikhail (1992)- PW-Alea-librairie de Modgles stocastiques, IRCAM, Paris, France.

14. MALT, Mikhail (1993)- Introduction a Patchwork , IRCAM, Paris, France.

15. MALT, Mikhail (1994)- Chaos-librairie de modeles chaotiques et de fractales , IRCAM,
Paris, France.

16. Mc ADAMS, Steve et A. Bregman (1987)- “L’audition deg flux musicaux”, in
Marsyas, Institut de pédagogie musicale et choreographique, La Villette, Paris (3-4) décembre 1987, PP
97-118.

17. MURAIL T. (1989) - “Questions de cible ” in Entretemps n® 8, Paris, France.

18. PEITGEN, H. O. ; JURGENS, Harmut; SAUPE, Dietmar (1993)- Chaos and
Fractals, New Frontiers of Science, Springer-Verlag, New York.

19. WALLISER, Bernard (1977)- Systéles et Modeles, Editions du Seuil, Paris.
20. XENAKIS, I.(1976), Musique Architecture, Casterman, Paris

21. XENAKIS, Iannis (1981) - Musigues Formelles, Stock Musique, Paris.

7.Agradecimentos

Escrevo este artigo como como bolsista do CNPq na EHSS~IRCAM—Pa£is, para a
realizagdo de um Doutorado em Misica e musicologia do século XX sobre Modelos
Matematicos e Composigfo Assistida por Computador” sob a diregéio de Huges Dufourt e
Jean Baptiste Barri¢re.

| Simpésio Brasileiro de Computacio e Misica 133

Synthesizing Music with Sampled Sound

YEEON Lo (muse@leland.stanford.edu) and DAN HiTT (hitt@cs.stanford.edu)
Center for Computer Research in Music and Acoustics
Stanford University
Stanford, California 94305
USA

Abstract
Sampled sounds are now an important resource for modern music-making and multi-media events.
But except for certain classes of sampled sounds, digital synthesis methods have to be crafted to
exploit them fully. A method involving a certain form of analysis is described here. Some results are
presented and its musical applications discussed.

1 Emergence of Sampled Sounds

Sampled sounds are now an important resource for modern music-making and multi-media events. As
magnetic storage costs less than §1 (US) per megabyte and gets cheaper all the time and as flash memory
becomes increasingly available, the advantage of sampled sounds in music computing is obvious. For
example, there is much less compelling reason to use an algorithm to generate, or synthesize, plucked-
string sounds when the latter are readily available from a CD-ROM or hard-disk memory.

Using samples not only speeds up the run-time process, thus making real-time performance attain-
able after a certain threshold in hardware speed is crossed, but also saves the user development cost,
because the operation becomes as simple as file I/O management instead of coding and debugging = piece
of numerical calculation in a typically larger and more complex music computing environment (which
combines and manipulates samples)!. In other words, the space advantage of algorithmic synthesis is
now overshadowed by time considerations.

So it seems that samples are replacing synthesis at least where acoustic instrument timbres are con-
cerned. And indeed one might argue that any sound of nonacoustic origin may be similarly made available
as samples at the factory, saving user cpu as well as development time as discussed above?.

2 Potential and Controversy

Now by means of widely available sequencing software, one can easily explore combining samples with
control over choice of sound material, amplitude, timing, spatisl movement and even reverberation.
Therefore it is not surprising that some see samples to replace the orchestra soon if not already. Surprising,
however, is that not everyone shares this bright outlook and there are those who are just as vehement
in believing that even from a purely musical standpoint, sampled sounds (with all the help they can get
from the computer) will never replace the orchestra!

Thus the questions are: Do we still need synthesis in a widely applicable sense? That is, do we still
need synthesis if we are only interested in making music from available sampled sounds? If we do, why?

And what form of synthesis do we need?

"To answer these questions, it might be profitable to examine some of the issues pertaining to working

- with sampled sounds. Those who believe in the role of the orchestra or live acoustic ensemble more or

less put their money where their ears are. Most trained musicians who rely on their ears to do their
business will say the music written for an orchestra and realized by sampled sounds are “second-rate” at

 best. (So far we haven’t examined the source of this less-than-second-ratedness.)

To be sure, we might still want to filter the samples, detune them, shape them and “warp” them in all manner one
¢an imagine, superpose them and sequence them, but these would be necessary additional operations anyway in the music
8ynthesis paradigm whether samples are used or algorithm are invoked. The advantage of sampled sound in this instance

 ilustrates the advantage of & whole class of sounds which are point-excited in origin—contributing to the popularity of

drum machines.
Here synthesis is used in the traditional sense of the word in sound synthesis by digital computer: the generation of

_ & sehuence of numbers that approximates the waveform to be heard (excluding & transformation for scaling—within the

1

imits of linearity—which is nothing more than turning = dial on your amplifier in the analog domain).

134 XIV Congresso da Sociedade Brasileira de Computacio

On the other hand, those who are educated in the language of information theory and computer
technology see a different perspective, based on a string of existential and counting arguments: Surely
the Sampling Theorem of Nyquist and Shannon guarantees that every vibration in the air that our ears
can catch the computer can duplicate with arbitrarily high fidelity. So if we sample as often as is required
by the rate of the most stringent fluctuation in the acoustic signal and resolve each sample value into a
number over the range required by the dynamic range of the signal and simultaneously minimize the noise
from quantization (which, although it cannot be completely removed, is generally not a musical objection
as far as concert music is concerned), then all the fine details in the orchestral performance will indeed
be faithfully captured. Thus, at least at a single spatial point (or a finite collection of them), a piece
of orchestral music is simply a finite sequence of numbers having finite resolution—i.e., equivalent to a
finite sequence of integers. Bounding the length of the piece (say to require it to be less than one hour)
bounds the number of such sequences, and gives a finite space of integer sequences to search through for
any desired orchestral piece (of duration less than one hour).

It is, however, a leap of faith to suggest that a large enough cascade or assembly of oscillators will
approximate arbitrarily closely the musical waveform if a few of them have been demonstrated to do so
to some degree of success with a certain (sub-)class of sounds. In this case, there is no mathematical
theorem concerning the procedure of synthesis (as opposed to counting). The Fourier theorem has
stringent assumptions. When we stretch the domain of operation to suit these assumptions, i.e., take the
Fourier Transform of the entire piece so as to avoid the periodicity restriction, we lose complete control
over the procedure of manipulating the parts (the samples) that form the piece. This is a problem because
our ears make use of time domain information as well as frequency domain information; in fact, music
is traditionally written, performed, and listened to in the time domain. When we “violate” the Fourier
premises by using time-varying approaches, we encounter all kinds of artifacts, as well as having to wrestle
with tedious computations and grapple with precision of control. In short, there is no theorem that will
guarantee the existence of a recipe which would produce a digital waveform for a score that would closely
approximate the digitized copy of an orchestral rendition of that score.

3 A Fundamental Practical Constraint

So, the enumeration and existence arguments—that the set of all digital waveforms forms a superset
of acoustic waveforms (and hence include every single orchestral piece ever written or that could be
written or that are physically realizable)—ignore the intricate process where by the overall waveform is
eventually arrived at. The enumeration arguments are simultaneously at odds with the combinatorial
explosion problem. These arguments, after all, apply even more strongly to writing prose, for example,
but authors have not been replaced. The moral is that a finite search space is not necessarily small, at
least from a human perspective. On the other hand, we have a small alphabet from which to build a
rich written vocabulary (and thus a literature). And we have a small set of phonemes to build a rich
and flexible spoken vocabulary (and thus can communicate). So it is quite desirable, from & computer-
science standpoint, to have a library of elemental objects (such as the sampled sounds) from which to
build complex music from—if we ever hope to have a satisfactory solution to making music with sampled
sounds.

It might be easy to dismiss our current lack of success in reslizing an orchestral score via sampled
sounds as a matter of incompatible paradigms—the methods of generating orchestral and computer music
being too far apart. But one doubts this view satisfies most who are dedicated to maximizing the utility
of a modern digital computer and who are well aware of the expressiveness and power possible from a
computer (theoretically, and, in other areas, practically). The machine’s current lack of eloquence reflects
our own {current) limitations.

An alternative might be to explore the sources of obstacles that give rise to that second-rate quality
when a score is realized with sampled sounds: identify the problems and search for solutions.

To do this, we will first take a step back to examine an important musicel application of sampled
sounds: interactive performance. Through it, we will soon find out some fundamental problems that
hinders their utility for making superior-quality music. And then we will proceed to suggest solutions
and present some preliminary results.

| Simpdsio Brasileiro de Computacio e Milsica 135

4 Interactive Performance: Can a machine imitate?

A classical approach to music making is the method of

imitation: canon, ricercar, fugue, or almost any polyphonic ikt lmmmn ey
writing, especially ensemble pieces. Live Simulation
Can a machine imitate? How well can it? Especially ’m@
with sampled sounds. :
Without loss of generality, let us use the model de- Fransducer |
picted in the diagram $o discuss a situation in interactive i s -{

performance-—an important application of the computer
to music. Let’s suppose that the live part consists of a
clarinet and a viola. Now suppose that the clarinet begins
the music with a lyrical solo passage and we expect the
machine to ease in with a polyphonic but homogeneous
texture. (We are looking for a gentle build-up in the mu-

sbstracted features

Ferceptoal (A";mysu f
Conve =2 Archive

sical activity.) Such a development naturally calls for a

similarly lyrical line from the machine, ideally voiced by b e e

s similar, i.e., clarinet, timbre. Now, if the lyricism of - o] r—
the live performer involves slurring of notes into long and w'@
short phrases as is most often expected, the polyphony

would make the most sense if the machine counterpoint is Acoustic

also slurred. Output

We will not consider the method of generating the counterpoint here (which is by no means trivial,
although it can certainly be achieved to varying degrees of success). The issue to discuss here is articu-
lation. Those of us who have worked with sampled sounds are aware that machines don’t slur very well.
And that is because despite the fact that a wealth of information is transmitted from the musicianship of
a skilled performer to the acoustic signal, all a machine (a commercial synthesizer or otherwise) can do
is cross-fade, which conveys practically zero information. This is an obstacle not only to using sampled
sound to jam with the clarinet, but also to jamming with the viola, a bowed-string instrument.

This ability to slur, or do other kinds of articulation over a group of notes, which contributes so much
to the music of any acoustic instrument playing, and which is such a measure of musicianship of the
performers, is lacking in current applications of sampled sounds with computer [1]. The lack which is
indeed a major stumbling block to replacing the orchestra (with sampled sounds) is due to a fundamental
limitation in our understanding of signal behavior when notes are joined, i.e., when samples of different
pitches but similar timbres, or different pitches and different timbres, or even different dynamics, are
joined. Although one can avoid the issue and create another kind of work, the limited machine expressivity
means the available “tricks” may be exhausted before long and adequate jamming or imitating using such
classically versatile techniques as transposing, inverting, retrograding, or permuting as Bach might have
done, is not practicable. (The emphasis is on the word adequately here; s preprogrammed or even
spontaneous note list whose performance is not musical or bears only a poor relation to the performance
of the live player is not really adequate.) Hence until workable methods for slurring are found (which
may in the worst case differ from sample pair to sample pair), it is safe to say that the computer will not
replace the orchestra (nor will sampled sounds).

5 A New Kind of Synthesis

The slurring or transition problem cannot be solved by recording and storing tables of transitions; this
runs into the “combinatorial explosion” problem so familiar from computer science. And we still have the
problem of joining the steady-state sampled regions with the transitions. This means we have to solve
the problem of joining sampled sounds, and points to the need for a more sophisticated synthesis than
we have commonly available.

Here, by synthesis, we mean the generation of the sequence of numbers which describes a waveform
or g section of a waveform—such as the transitions between two samples. In this case, the samples near
the transitions may also be modified in order that the connection be smooth.

136 XIV Congresso da Sociedade Brasileira de Computacio

In order for the synthesis to be capable of creating smooth transitions between sampled events, so
as to achieve greater intimacy of interaction with live performers and to possess a greater degree of
coherency, analysis must play an important role in this kind of synthesis. For example, if we need to
create a transition between clarinet tones o and j, we must somehow dig into the data present in o and

B, and elicit its essence.

The question now shifts to what kind of analysis is suitable for analysis-based synthesis.

6 Perceptual Computing, and “Capture and Convey”

Analysis has value in and of itself; it is, after all, the primary intellectual activity.

The analysis that we propose should be performed on sounds, however, has a particular goal: to
enable a suitably flexible synthesis for musical purposes.

This suggests that our analysis should be “receiver-based”: i.e., it should seek out attributes of the
signal which receivers (humans) find significant. Further, it should guarantee some sort of continuity or
smoothness condition in the other {auditory) perceptual attributes as a particular one is varied, in the
synthesis of a class of sounds. In short, the analysis of a particular perceptual attribute should be able
to express its essentials in the context of other perceptual attributes. For example, a computation which
helps to enable us to take the pitch contour of a phrase with one timbre and re-perform it with another
timbre would meet this criterion. A computation which purports to abstract a pitch contour but from
which we cannot develop or reconstruct a phrase (e.g., to make a satisfactory slur) would not meet this
criterion, and in fact would not be nearly as useful. A second example would be a process enabling one
to take a pitch contour in & given timbre and transpose it to another pitch height without significantly
distorting the timbre—we might refer to this as capture and convey, and we maintain that we haven’t
really captured anything if we cannot convey it (i.e., in this case, transpose it without distortion) We can
formalize conveyability and how we intend to use it: '
Definition. A perceptual structure o is conveyable

1P, () — Po (@)l < ||Pal®) = Pa(2)]] @,' €S
(=) is the pitch of =, and P, is the projection

{x) (over a sound set S with respect to pitch) if

Here, Py is the projection onto the pitch dimension, i.e., Pr
onto the parameter space of o.
Remark. We cast conveyability in these terms because often changing pitch necessarily changes & (which
might be one of the “qualities” of timbre, for exsmple, to what extent and in what way it sounds like a
violin); we only demand that the change in o be small compared to the change in pitch.
Definition. A perceptual structure ¢ is capturable (k) weakly for a certain sound if that sound can
be resynthesized perceptually identically with respect to o. It is capturable strongly if as well it is
conveyable.
Remark. The intention is that we’ve captured a particular timbre weakly if we can resynthesize it, and
we've captured it strongly if we can resynthesize it along some range of pitches.

These considerations—in particular the notion of capture and convey-—provide us with a broad mea-
sure of the success of our analysis and synthesis as well as measuring how resonant our methods are with

sampled sounds.

7 A Particular Case: the Kinematic Method

Here, we report on s particular kind of analysis-based synthesis which we are using and trying to further
develop to deal with the issues mentioned previously: joining sound events, capture and convey, etc.

We call the method kinematic synthesis because it is modeled on certain entities moving (hence
“kinematic”) through a suitable vector space (see [2], [3], and [6] for additional information on the
kinematic method). .

Briefly, the method models musical sounds as consisting of states and transitions between them, where
the time scale of o state is comparable in some cases to the time scale of frames in a motion picture; in
fact, we call the “periods” of a sound “frames”. We note of course that no musically interesting sound is
periodic, but the waveform of every musically interesting sound passes through stages with a great deal

| Simpésio Brasileiro de Computacio e Msica 137

of redundancy involved. One i i is i |
. goal of kinemat:
ey o e Bonl of ic synthesis is to remove the redundancy from the analysis
) &IXI:ires iexgctly, the .method pf)sf:ulates that a sound can be perceptually recaptured from a certain set
: a'eczro : &';},1& triple, consisting of a frame trajectory, an amplitude envelope, and a n'sed
:n_:ist o :'u 0 ; use of the t;,erm “trajectory” is to suggest motion. The frame trs.je’ctory d(!))ees"x:)t
;rames ol 5 rames (as we've x'lsed .the term above) in the sound, but principle or key frames (bre:k
fram. S,o u)]rldnc ogg with bresk points in a piecewise linear or piecewise smooth curve) from which much
e e env;:pe :n ;;cove:;e?h (some¨iht call it spectral data, which is approximately true). The
s out the overall changes in amplitude, and can be cast i incl
! pe m in many forms (i i
::n a 1{)::3 eofe' ::nlctlons. 8 lower. and upper envelope). There is actually a great deal to ybe said gﬁ:;d-;‘lg
on];tmctio ve :}E)e ('a,s there is about the other two members of a triple), but one heuristic guide to 'te
; et n is ¢} at ”1t ref‘lect the .smoothness and evolution of the sound. The period trajeitor m -
ow the “micropitch” varies (and in many cases is nearly flat) as measured by the ch i Taotion
of the frames through the space. Y ehanges I the motion
The analysis data (triples—frame traj i i
¢ ajectories j i i is di
rectly intormmtable o sree e i “.,] , period trajectories, and amplitude envelopes) is di-
Th i 1
o o er erg‘el:l}zlzd tries to exploxt. the mass of sampled data we find ourselves surrounded with, but tries
bo cut redur éu:ty on zizu dynamic basis (so in a very “innovative” part of a sound, say the ati:ack more
frames —mo }1;2 v:&j?w be used., as well perhaps having a more densely specified amplitude envélope)
IE we cast Lhe e orm1 as a series of frames—points in some high-dimensional vector space—it form.
e da,t ; mduc\:/; sa.mpt e I'n:;f densely where it is most dynamic (e.g., where the curvature is gresd:er)s
n is typically in excess of 90% just on resynthesi i :
; sis b
notlTo;~an§hwe lose no phase spectrum data (on the break fr:’mes). (ceptu) nsing the bresk frame
o ‘i, ix;llci:n zd has had some success in c.apture and convey; we've conveyed flute tones across an octa
and o vio (;ne }z:cross three octaves with variable (and arbitrary) durations. We’ve also conve, dv K
o-note phrase from the flute in the pitch dimension, and have created timbre melodies invo)ij/in;

the violin and the flute. If we conve i
e s Tonge. y a sound over M pitches, then of course the data reduction is M

8 Applications

Kinematic S&IltheSlS» or other Compﬂrﬂble methods, have at least four unPOItant uses in musical con-
) n

1. E‘fanswsmﬁ' retrogression, inversion, and other continuous line formations. The first three of
th:S:i :irees :e echlfan&tory' (and of course, when we talk of, say, inversion, inverting the note lie:tgs
D Suiz:rbl ; ' :ll;et Zﬂ§0tg l:ve wgnt ti<)> produce: we want to invert a line with articulation and

ed to the original). By “other continuous line formati
: A mations”
on continuously changing sounds, such as slowing or other articulation tone? e refer Lo elfets

IS

- Timb _— . . .
! ;In;l :; il::zt;lt:;:;?;(;n}zytthli :;e x:}eax}; taking » line and holding its pitch trajectory constant while
. . nts of the timbre (in the si is mi i
clarinet line with a trumpet line'-«musica}ly). Fanplost case, this might xefer to sey, replacing o

A . . .
Se:;ilzil?lga:ﬁ::oned transfo[;ma}l:lons. In a simple case, this might refer to going through a curve
sequence aff where a stands in relation to some f i i :
same way the 3 stands in relation to feature B i and thon veloning g e I the
: in the template, and then replacing 8 b;
a T in the template). See [3] regarding this approach to sound ’modiﬁcationiynthi‘:i v o fom

R . :
toesgt;oz;i;f;lg(})‘f ;i::: It;rt(zln ccloiruptlon. A very good analysis-based synthesis paradigm should be able

| . ata—say captured from an old viny} record—: igi
perceptually identical to the original. (We don’t claim to hav}; donzrthisa:x(li :;;ar:r;ed:itlzl)s"eam

Th . . C
smmdse g;jlafi;;z;l 1r;1;erest tt.me has-m these applications is of course in the case of continuously sustained
. mputing environment to carry out this kind i is i
. 1 . 0 s kind of analysis-based synth -
ed (extensible) object model with a “polyhedral” architecture where multi-windi\l; liflljtiw dz?:uc:ﬁent
, - en

138 XIV Congresso da Sociedade Brasileira de Computagéo

applications form the vertices of the polyhedron, and can communicate with each other across the edges,
under user control; mixing, editing, synthesis, and analysis can be done concurrently in full view of the

user {[5], [6])-

9 Concluding Remarks

1. Certain classes of sampled sounds are directly, immediately, and readily usable for the purposes of
composition, e.g., point- (impulse-) excited sounds such as plucked string (pizzicato), drum, and
piano (to some extent). Other sounds are useful for special occurrences but not for smooth melodic
definition.

9. In order to widen the applicability of sampled sounds, the research community needs to direct
its efforts to finding solutions to make the non-impulse-excited sounds readily usable for forming
musical constructs. A synthesis model is not as useful if its demonstrable application is limited to
plucked or percussive sounds. Likewise, a synthesis model which can take two sampled sounds and
join them in a variety of expressive two-note phrases is more useful than a model which merely
duplicates an existing sampled sound.

3. We must recognize that makinga lyrical melody via digital means entails more than just cross-fading
two sounds. It is essential to accept that in most cases, creating transitions requires knowledge,
either in the form of data from the signal, or in equivalent algorithms to generate the data.

4. There is more than one possible transition between two tones, whether the timbres are the same
or different. That is, a multiplicity of possible trajectories exists. These constitute a repertoire of
articulations. The ability to display them digitally is a demonstrates the expressivity of a given
composition/performance environment.

5. To choose a suitable transition trajectory (in order to maximize some local coherence criterion in
composition), one needs suitable analytical tools. This is important in both a composition as well
as a performance environment. The relevant tools might include some to decide which transition
trajectory is being executed by the performer and provide the responding algorithm the best or
most accurate information (regarding what actually happened) and allow it to make the best choice
under & given composition strategy. They might also include some to analyze the pitch trajectory
so as to perform a retrograde, transposition, inversion, etc., in a musically responsive way.

6. One synthesis candidate that is naturally suited for joining (or connecting) sampled sounds into
articulated melodic constructs is kinematic synthesis, where the basic unit of the method is the
triple: the amplitude envelope (possibly expressed as upper and lower sub-envelopes), the pitch
trajectory or equivalent, and the trajectory of critical frames (which are periods in a steady state,
and something more general in transient regions).

References
[1] Strawn, J. (1985) Modeling Mugsical Transitions (Ph.D. Thesis), Technical Report STAN-M-26.
Lo, Y. (1986) “A Technique for Timbre Interpolation” Proceedings of the ICMC 241-248.
Lo, Y. (1987) Toward a Theory of Timbre (Ph.D. Thesis), Technical Report STAN-M-42.
Hitt, D. & Lo, Y. (1990) “L: A Language for Composition”, Proceedings of the ICMC 237-240.

]
[5] Hitt, D & Lo, Y. (1992) “An Alternative Digital Environment for Music Synthesis” Proceedings of
the Delphi Computer Music Conference/Festival [not paginated).

(6] Lo, Y. & Hitt, D. (1992) “Uniform Treatment of Sounds and their Syntheses on Digital Computers”
1992 International Workshop on Models and Representations of Musical Signals, Capri, Italy [not
paginated].

| Simpésio Brasileiro de Computacdo e Misica

139

Um Ambiente de Auxilio a Composi¢io Musical

ALEXANDRE JONATAN BERTOLI MARTINS
ANDRE LUIZ COSTA BALLISTA
Instituto de Informatica - CPGCC

Universidade Federal do Rio Grande do Sul
Campus do Vale - Bloco 1V

Av. Bento Gongalves, 15064, CEP 91501 - 970

Porto Alegre - Rio Grande do Sul
fone: +55 (051) 336-8399 - Ramal 6161
e-mail: NATAN@INF UFRGS.BR e BALLISTA@INF UFRGS.BR

MARCELO SOARES PIMENTA
Departamento de Informatica e Estatistica
Universidade Federal de Santa Catariana
Campus Universitario, Trindade, CEP 88049-900
Floriandpolis - Santa Catarina
fone: +55(0482) 319739
e-mail: CECIMSP@BRUFSC BITNET

Abstract:

Este artigo apresenta wm ambiente de auxilio a composigdio musical
desenvolvido em Smalitalk V/286. Ele prové ao compositor meios de criar e
manipular objetos sonoros, os quais podem ser testados interativamente
através da utilizagdo de sintetizadores acoplados ao ambiente. Para este
sistema niio ha distingdo entre uma nota musical e uma melodia completa:
ambos sdo objetos sonoros e sdo tratados da mesma forma. O sistema foi
projetado e implementado de forma orientada a objetos e o ambiente
utiliza o mesmo paradigme para sua interagéo com o usuario.

1. Introducgiio

As siphcagées milsico-computacionais t8m se destinado a atividades bastante diversas. Aquisi¢io e
mpmd‘ugao de performances, ensino e treinamento préatico e tedrico da misica, geragdo automatica de
melodias ¢ auxilio a composigio musical siio alguns exemplos. ’

Neste a.rtig’o, trataremos especificamente da utilizagio de computadores na composigiio musical.
Como COMIPOF € U Processo criativo, € necessario wm ambiente que proporcione ao usuéario ferramentas
que o auxiliem durante todo este processo. Por sua vez, estas ferramentas devemn ser projetadas
especificamente para o processo de composigdo, de forma que o compositor néo seje obrigado a adotar
uma metodologia de criagio para que possa utilizar tais ferramentas.

Apre}sentﬁﬂirp@S aqui um ambiente de auxilio a composigio musical denominado CAMC [2], que é
um amt.nente orientado a objetes desenvolvido em Smalltalk V/286 para suportar o proceéso de
composigio musical. Ele prové ao compositor meios de criar ¢ manipular trechos musicais, os quais
podexp ser testados interativamente através da utilizaglo de sintetizadores acoplados 20 ambi’ente Para
este sistemna n3o hé distingio entre uma nota musical e uma melodia completa: ambos séio of)jetos
sonoros e s30 manipulados da mesma forma.

lPa_ra a repre§entaq§o da musica utilizamos o modelo Smallmusic {3], que incorpora conceitos
musicais a0 amblet}te de programagio Smalltalk [5]. Todos estes conceitos sdio automaticamente
mapeados para objetos da lingusgem Smalltalk que podem ser manipulados ¢ reutilizados na
implementagio de novas ferramentas computacionais voltadas para a musica.

140 XIV Congresso da Sociedade Brasileira de Computacio

A segilo seguinte se concentra na utilizagio de objetos como forma de representagio da musica. A
se¢o 3 faz uma breve desorigho do modelo Smallmusic. Na segfio 4, é apresentado o ambiente CAMC ¢
sua abordagem de composigho como prototipagio. A segio 5 contém algumas conclusdes sobre o
trabalho desenvolvido.

2. Representagio da Misica através de Ohjetos

Reais ou abstratos, objetos estdo presentes em todas as atividades humanas ¢ a miisica njo é
exceglio. Até os mais simples coneeitos musicais podem ser descritos como objetos. Se observarmos
atentamente uma partitura musical tradicional poderemos perceber facilmente a existéncia de intimeros
elementos cujo comportamento é variado porém com uma série de caracteristicas em comum, ¢omo
podemos verificar na figura 1.

Figura 1

Todos estes objetos se interrelacionam agrupademente de forma a constituir outros objetos mais
complexos tais como melodias e trechos musicais ou até mesmo uma composigio completa. A partitura
anterior, por exemplo, podetia ser organizada como na figura 2.

Introdugdo \
refrio fim

Figura 2

Esta figura apresenta de forma mais clara como esth organizada a composigio acima. Os objetos
mais simples (figuras musicais) estio agrupados constituindo objetos mais complexos. Entretanto,
embora de diferentes complexidades, todos estes objetds apresentam um comportamento similar e
podem ser utilizados da mesma forma (uniformidade). Podemos verificar no exemplo dado que, do
mesmo modo que figuras musicais tradicionais como as colcheias aparecem diversas vezes ao longo dos
trechos, 0.objeto refido aparece duas vezes na imiisica (um tom abaixo na segunda vez),

Esta forma de representaglio facilita o processo de criagiio, pois o compositor é capaz de conceber a
estrutura basica de uma miisica simplesmente compondo os objetos do sisterna, mesmo que
internamente estes objetos ainda no estejam completamente definidos ou adaptados para a composigio

| Simpdsio Brasileiro de Computacio e Misica

141

em questdo. No pentagrama tradicional, podemnos imaginar a mesma musica descrita por objetos como

na figura 3.

Solo) -

! Refrdo

RERN

Hefréo -

Base

Figura 3

E importante ressaltar que uma musica definida desta forma, mesmo que incompleta, podera ser
reutilizeda na composigio de novas musicas pois, na visio orientada a objetos, ela é um objeto como
qualquer outro.

3. O modelo Smallmusic

O modelo Smallmusic ¢ um modelo orientado & objetos para a representagiio da musica. Objetos sio
estruturas de dados auto-descritivas cujo comportamento esta definido em subrotinas (métodos) auto-
contidas [5]. Como nosso objetivo esta centrado em definir e interagir com conceitos musicais e sons,
vamos tratar de objetos especificos para esta tarefa denominados sound objects.

Um sound object tem trés caracteristicas principais: rome, que identifica o objeto; icone, a
representagiio grafica do objeto e pardmetros, que descrevem o som ou evento produzido pelo objeto.
Estes objetos estfio organizados em uma hierarquia de classes como na figura 4.

‘SoundObject

(Compound)

Figura 4

A classe SoundObject é a superclasse, e define o comportamento e as caracteristicas basicas de
todas os sound objects. Nesta classe estdo definidos os parimetros que s#o herdados por todas as suas
subclasses.

A classe Primitive generaliza as classes primitivas do Smallmusic. Estas classes modelam os
conceitos musicais mais simples e estdo diretamente relacionadas com o protocolo MIDI [4), ou seja,
para cada subclasse definida existe uma mensagem MIDI correspondente (rote On, note Qf, ctc.). Estas
primitivas s8o as tinicas classes capazes de produzir sons ou eventos diretamente. Se desejarmos, por
exemplo, enviar uma mensagem Note On para o sintetizador basta criarmos um instincia da classe
NoteOn, configurar seus pardmetros ¢ executd-la, da seguinte forma:

142 XIV Congresso da Sociedade Brasileira de Computacio

{nOn|

1On = NoteOn new.
nOn
tick: 20.
midiChannel: 10;
key: 64;
velocity: 100.
nOn perform.

Especializando a classe Compound, ¢ possivel incorporar novas classes a hierarquia do Smallmusic.
Estas classes sio ditas compostas, j& que a sua estrutura ¢ definida através da composigio de conceitos
musicais modelados em outras classes primitivas ou compostas. Os objetos que formam urma classe
composta so chamados componentes. Por exemplo, dois componentes serdo necessarios na definigéio
da classe Nota: um da classe NoteOn e outro da classe NoteOff. Ja um acorde (triade), pode ser definido
como uma classe composta que possui trés componentes da classe Nota.,

Uma miisica (ou trecho) pode ser vista como uma seqiiéneia de sound objects interrelacionados. A
classe Mix (mistura) representa este conceito. Uma mistura é o agrupamento de instdncias que pode ser
efetuada de forma seqiiencial ou paralela. Estes dois tipos de rmistura estfo relacionados diretamente com
a disposigio das instdncias ao longo do tempo. Por exemplo, para criamos um Mix de uma escala
cromética podemos efetuar tma mistura seqitencial, como abaixo:

| escala |

escala = Mix new.
1to: 12 do: [:p| escala = escala,(Nota new pitch: p).]

4. O Ambiente CAMC

© ambiente CAMC foi projetado para auxiliar o compositor durante o processo de criagdo musical.
Este processo nio pode ser definido formalmente ¢ tampouco delimitado por uma seqiiéncia de passos
enumeraveis. Além disso, diferentes pessoas podem ter motivagdes distintas para compor uma miisica e,
como conseqiiéneia, processos proprios de criagio serdo utilizados. Entretanto dificilmente um musico,
por mais genial que seja, ird conceber uma idéia musical finalizada e completa em um tinico instante. A
sua idéia imicial vai amadurecendo, e neste meio tempo, novas idéias e concepgdes na organizagio da
melodia musical vio sendo utilizadas.

Desta forma, ¢ possivel considetar o processo de criagdo musical como uma atividade de
prototipagio (Bgura 5). A representagiio da musica através de objetos apresentada nia seglo 2 esta de
acordo com esta idéia, pois neste enfoque a miisica pode ser descrita por,uma segiténcia de objetos ja
concluidos, como na figura 1, ou que serdo refinados, como na figura 3.

| Simpésio Brasileiro de Computacio e Misica

143

e

Para permitir a aplicagio dos conceitos relacionados a prototipagio no process $i
(ggura 7?), o ambiente CAMC dispde de duas ferramentas: o Desl?toi) (ﬁgurapé) esoOE(slzisﬁ)mg: Sslﬁs
(figura?). '

A anmpal .caxacten'stioa do Desktop ¢ suportar um modo experimental de trabalho, permitindo ao
composxtgr a_vzlthar rapidamente o resultado de suvas experiéncias. Por sua vez, o Eshidio de Som ¢
dedicado & atividade de performance, possibilitando a gravagdo e reprodugiio de objetos musicais. Estas
duas ferramentas sio complementares ¢ manipulam os objetos existentes no ambiente de rrllaneira
integrada.

Olam:biente foi c.lesenvolvido na linguagem Smalltalk V/286 e utiliza o padrio MIDI para a
comtgucagao com 0s mstmmentos musicats. O controle de mensagens MIDI ocotre em tempo real
através de processos ativados por interrupglio, o que confere maior flexibilidade na interagio do usu-ério)
com o ambiente.

5, Conclusdes

Neste_ artigo apresentamos um ambiente de auxilio 4 composigho musical, no qual foi utilizado um
modelo .onentado 2 ob_jetos com o objetivo de suportar a idéia de composigho como prototipagio.

_Exnstem oultros tipos de ambientes para apoio a composigio musical que se baseiam na notaglio
tradllcxonal Concordamos que a notaglio musical tradicional seja necessaria para o registro de melodias
devidamente concluidas, j& que é uma linguagem mundialmente consagrada. Entretanto, a sua
repr;sentagﬁo rigida' (notas, tempos e compassos) ndo nos parece ideal para a atividade de) criagio
mu§1§al. (P;;:r este Soﬁvo, pretendemos incotporar ao ambiente wma nova ferramenta que permita ao
usudrio editar os objetos numa espéceie de pentagrama. sical y i
e e nopr)n e de pentagrama. Neste caso, as figuras musicais corresponderiam

Iremos cominuar evoluindo a modelagem aqui apresentada. Estamos investigando a utilizagio do
modelo delegativo de protétipos [1] na implementagdo dos objetos, com o objetivo de ampli
uniformidade do modelo ¢ a interatividade do ambiente. T P

6. Referéncias

[,1], Ball%sta? AAL.lC. (1993). Protétipos ¢ Delegaglo - Uma Experiéncia de Desenvolvimento,
Relatério Técnico. Niicleo de Computagio Sonica. Universidade Federal de Santa Catarina,

‘ {2] Martins, AJB & Ballista, A.L.C. (1992). CAMC fComposic;z“io Musical Auxiliada por
Computador. Relatdrio Téenico. Departemento de Informitica e Estatistica. Universidade Federal de

Santa Catarina.

[3] MartinAs, AT B & Pimenta, M.S. (1993). Smallmusic - Uma conversa musical em Stalltalk. dnais
da XIX Conferéncia Latino-Americana ds Informatica. Volume 1. pp 593-610

[4] Furia, 8. & Scacciaferro, 1. (1990). The MIDI Programmer's Handbook. M&T Books.

5] Goldb 3 7 i
Addiiol. \};)eslej,ﬁgg_& Robson, D. (1983). Smalltalk-80: The Language and its Implementation.

Ise de:se;annos representar uma nota com duragio de 4 seminimas (semibreve) em vm compasso 2 por 4, serdio
necessarias duas minimas em compassos sucessivos unidas por uma ligadura. Desta forma,‘ o objet‘o~ ue
quedamos representar foi modificado para respeitar o tempo do compasso. Da mesma maneira, existem al; mq

situagbes dificeis de serem representadas pela notagfio tradicional. B

145

Usica

cio e Md

io Brasileiro de Computa

s

impos

IS

cio

XIV Congresso da Sociedade Brasileira de Computa

144

Estudio de Som

o

igura

F

Desktop

6

Figura

 Gimp6sio Brasileiro de Computacéo e Mdsica 147

Orquestrador MIDI Sinfénico

OSMAN GIUSEPPE GIOIA
Laboratorio de Processamento Espectral
Departamento de Ciéncia da Computagdo

Universidade de Brasilia
Brastlia - D I'- CEP 70.910-900

Resumo

A Orquestra Sinfonica moderna representa atualmente o estado da arte na execugio
musical em conjunto ¢ podemos considera-la como uma maquina sonora
multitimbral constituida por véarias unidades harmdnicas espectralmente diversas -
os instrumentistas ¢ seus instrumentos - que, atvando em naipes ¢ scees
constituem uma estrutura espectralmente finita, Por outo lado, nas composi¢es
algoritmicas que utilizam a sintese aditiva como meio expressivo, sdo utilizadas
unidades harmonicas senoidais que possibilitam a elaboragio de estruturas
espectrais potencialmente infinitas. O trabatho aqui apresentado tem como objetivo
realizar um mapeamento cntre os instrumentos algoritmicos ¢ os sinfonicos que,
utilizando preceitos definidos a partir de atributos psico-acasticos previamente
levantados, gere uma orquestragio para execugfo por orquestra sinfonica ou através
de médulos de som digitais que estejam enquadrados no padrdo General MIDL

Intredugio

Os sistemas de composicio algoritmica ¢ sintese aditiva em geral, basciam-se nos conceitos de
nstrumentos” ¢ “orquestra” na geragfio ¢ reproduciio dos timbres espectrais ¢ portanto, um dos caminhos
naturais de execugdo por outros meios de reprodugdo sonora constitue-se no mapeamenio das caracteristicas
espectrais geradas pelos instrumentos da orquestra algoritmica para a sua contarpartida nos instrumentos de
uma orquestra sinfonica ou na falta desta, em seu corrclato digital utilizando-se as segBes instrumentais
sinfonicas do padrdo General MIDI. O Orquestrador MIDI Sinfonico aqui apresentado foi portanto
implementado com o intuito de mapear as cartas espectrais geradas pelo CARBON (Arcela, A., 1989) para o
dominio dos instrumentos sinfonicos. Este mapeamento tornard vidvel nfo s6 a execucfio sinfonica através da
impressdo de partituras no sistema NOTACOR (Meireles, A., 1994), quanto digital, através de seqiiéncias GM
executadas pelo sistema MAESTRO (Pereira, A., 1994), programas cstes que junto ao trabalho em questdo
compdem parte do Projeto DECIBEIS (Arcela, A., 1993),

Instrumentos Sinfénicos

Para que possamos realizar uma orquestracdo correta, precisamos de alguns dados basicos sobre cada um
dos instrumentos com os quais trabalharemos. Entre eles podemos destacar a extenséio, o tempo de ataque, 0
centro da banda passante espectral ¢ a duragdo de sua envoltdria de amplitude no caso dos instrumenios
percussivos. Para o levantamento destes dados, além de utilizarmos pesquisas previamente realizadas. (Fonie
principal: Luce, D. & Clark, M., 1965), estamos em fase de realizagdo de experimentos paralelos tanto para a
¢hecagem final dos dados quanto para o preenchimento daqueles nfo disponiveis. Como o nosso objetivo é o de
Orquestrar também para modulos digitais, além de trabalharmos somente com os instrumentos comuns aos dois

148 XIV Congresso da Sociedade Brasileira de COmPUtag§0

i simposio Brasileiro de Computacio e Misica 149

sistemas, estamos utilizando para o levantamento dos dados a biblioteca de sons da Roland Corporatig,

i Tabela 4 - Saxofones
(Roland Sound Library) como fonte principal das amostras digitalizadas.

Extensio Centro da Banda Passante Transientes de Ataque
Soprano FH3 - D#6 Aft4 0.073s
Instrumentos de Corda Alto CH#3 - GHS 4 00295
ta histéria da orquestragiio, o grupo de instrumentos de cordas - violj Tenor 12D 3 00225
Através da comparativamente curta histéria da orquestrag grup Olinos, Baritono C#2 - Git4 E#3 0.030's

violas, violoncelos ¢ contrabaixos - manteve a sua posigdo de elemento dominante na orquestra sinfonica ¢ sio
os instrumentos com o maior tempo de ataque (Piston, Walter, 1955; Beauchamp, J.W., 1974; Carleen, M.H

1973; Luce, D. & Clark, M., 1967). Instrumentos de Percussio

Podemos definir os instrumentos de percussdo como aqueles nos quais o som ¢ produzido pelo chogue

- C d(. .
Tabcla L Lordes cntre dois objetos. (Berlioz, H. & Strauss, R., 1948)

Transientes de Ataque:

Extensfio Centro Solo Grupo Pizzicatto Duragiio Definida
Violinos G3-C7 ES 0.080's 0.071s 0.032s 0.683 s Altura
i - 34 0.056 0.07ts 0.053s 0.726 s ‘ . ’ B o o
o o Ez ;3 0.085 . 0.071s 0.019s 0.675 s Com excegdo dos Timpanos que sdo membranophones todos os outros sdo idiophones. (Christian, R. S. &
i 22 - C. L . L . 5 . . § : i X "
Zxolto nf:isos Iif G3 F#2 0.062s 0.071s 0.039s 0.725s Davis, R. & Tubis, A, & Anderson, C. & Mills, R. & Rossing, T., 1984).
ontral S =430 " A .| .| A

Tabela 5 - Percussdo Definida
Extensio Centro da Banda Ataque Duragiio

Instrumentos de Sopro

. Glockenspicl C5-C8 ¥#6 0.0006 s 0.8176 s
Sopros de Madeira Vibrafone F3-F6 B4 002925 0.9432s
. . . R) . Marimba C3-C6 FH4 0.0007s 0.8163s

Um definigio 1ogica ¢ convincente da categoria conhecida como madeiras ¢ dificil de ser proposta pois og Kilofone F4-C7 Gs 0.0025 03892
. . L ‘ : . 4 - . s x s

corpos de seus instrumentos sdo construidos de diversos materiais. Porém na orquestra os instrumentos assim Carrilhiio C4-F5 Ad 00025s 2.6340
i a i i 1a, ¢ a flauta é, junto s cordas, o instrumento de - . 6340 s
classificados sdo de embocadura livre, patheta simples ou dup J > de Timpanos C2-A3 A2 0.0336s 133125

ataque mais longo (Berlioz, H. & Strauss, R., 1948; Fletcher, N.H., 1975; Luce, D. & Clark, M., 1967).

Tabela 2 - Madeiras tura Indefinida

Extensio Contro da Banda Passante Trapsientos do Ataque Por ndo possuirem uma freqiiéncia dominante auditivamente discernivel consideramos como tal, a
Hlautas c4-¢7 s 0.080s freqiiéneia predominante no ponto méaximo de sua envoltoria de amplitude e por serem muito diversificados,
Tlautim b5 -C8 G6 0’024.8 utilizaremos somente aqueles constantes da especificacdo General MIDI, (Aikin, J & Marans, M. & Rule, G.,
s s o o 993; Fletcher, H. & Basset, L., 1978; Rossing, T. & Bork, L. & Zhao, H. & Fristom, D., 1992).
orne Inglés 33 - g 014 ¢ :
Clarinctas D3-C5 A4 00305 Tabela 6 - Percussio Indefinida
Fagotes ML 56 L 004 Freqiiéncia Transientes Duragio Freqiéncia Transientes Duragio
umbo 40.000 0.011451 s 1.517891s | Agogo Agd 1382.100 0.003288s 0.076871 s
Sopros de Metal 233.101 0.006122 s 0.161383 s | Agogo Grv 1035.890 0.004376 s 0.102608 5
Todos os instrumentos deste naipe sdo de metal e seu som é produzido através da vibragdo dos labios ¢ m"f“"‘" 1612.570 0‘001202% 0.016939 5 Labaqu 10985.600 0'0492975 0.063941 5
! andeiro 8491.970 0.005351 s 0.151837s | Maracas 12685.200 0.004580 s 0.052721 s
um bocal (Jachino, C., 1950; Luce, D. & Clark, M., 1967). Cowbell 487378 0.004807 s 0.120952s | Apito Crto 2256.800 0.073447 5 0.094490 s
. . 5229.220 0.041814s 1.941020s | Apito Long 2005.300 0281723 5 0391361 s
Tabela 3 - Metais Queixada 993871 0.003946s 0950975s | RecoCurto 1239.860 0012472 0030816
Extensio Centro da Banda Passante Transientes de Ataque 3 6091.350 0.076463 s 1.618798's | Reco Long 2103.800 0221134 0252925 s
Trompas F2-F5 B3 00455 ; ongs Agd 756.922 0.008389 s 0.059569s | Claves 2221.100 00017695 0.026145s
Trumpetes AM3 - Afi6 ES 0.030s : Hongd Grv 373.488 0.002880 s 0.089864s | Whlock Ag 822.152 0.001383 s 0.102041
Trombones AL -D#S Fi3 0.033s oniga Mut 757.090 0.003129 s 0.030499 s | Whlock Gr 611.488 0.001088 5 0.076463 5
Tuba F1-F5 2 0.062s Conga Opn 276168 0.009773s 0.134286s | Cuica Mute 720458 0.059592s 0.157800s
Conga Grv 206,815 0.013039 0.179705 5 | Cuica Opn 513,411 0.043605 5 0.198685 s
Saxofones imbal Ag 913.163 0.004671 8 0.237302 s | TriangMut 5494.230 0.000975 s 0.150635 s
imbal Gr 691.270 0.006213 s 0315147 s | TriangOpn 8542.810 0.000975 s 1.136304 s

Apesar de nfio serem parte integrante do naipe de sopros de uma orquestra sinfonica, foram incluidos
orquestrador como instrumentos opcionais. (Mancini, H., 1954).

150 X1V Congresso da Sociedade Brasileira de Computacio

Orquestragio MIDI Sinfonica de Cartas Espectrais

A orquestragdo sinfonica ou MIDI sinfonica Qas cartas espectrai,s é_realiza@a 0bsewa1:do—§lc1f13$a sser;f G,le
preceitos que norteiam o mapeamento univocq dos instrumentos algontnucos’en.l instrumen (fs s:i oadzou.m gos
o levantamento ¢ sistematizagdo destas diretrizes de ac:ordo com as caracteristicas mrt\:lllr;c;cgir eI:] 1'c o8
meios de expressio espectrais envolvidos, pudemos entdo desenvolver o Orquestrador sinfénico.

Instrumentos Sinfonicos

O primeiro & mais importante requisito para a realizaq§0 de uma orqus:straqﬁo ~musi'calmente cci)tr;z;at,o e’do
de respeitarmos a extensio de execuglo orquestral de cada instrumento, além d‘? plfe:i/enllrdo a;t)arefo o dZ
notas mapeadas para os extremos da mesma concentrando-as em torno da faixa ideal de atuach
instrumento, ou seja, proximas do centro de sua banda passante espc’ctr.al.) ' o A

Qutro fator para o qual precisamos atentar s;o as car‘actensncas espectr':jus ’de cada 1nstrume: moe‘nt
informacfio espectral pura ndo nos fornece subsidios suﬁcxente§ para a realizagfio de l;nlm mapeﬂmbreo
deterministico, pois os espectros sénicos gerados pela sir'xtese adltlv?[l nio encox}tfam p;lxjral }?o gos b S
obtidos a partir dos instramentos sinfonicos ¢ suas combinagdes. Além disto, valrlqs tral a}. 0§ ! osmmtes ,in
(Luce & Clark, 1965, 1967; Seashore, 1967, Pierce, 1983) que uma das fiaracterlstlsas rmu§ i p((j) e to
reconhecimento da maioria dos soms sdo os transientes de atague ¢ nfio a porgho continua do cspeciro
harmdnico de uma determinada fonte sonora.

Instrumentos Algoritmicos

Os instrumentos algoritmicos gerados através de sintese adit.iva por serem tota?mente ma‘m.puldévi;s ndo
encontram contrapartida espectral no mundo dos instrumentos sinfonicos. Além disso, a ﬁnfsllda ‘13" er uma
orquestragio ndo & a de mapear timbres que podc?riam_ ev;cntualmeme ser assf:mclhadosgd ma~s 5181 :ea g:iorurr;z;
"transposigo espectral” utilizando as caracteristlca; intrinsecas de c:elda‘ meio de repr t'xca(;{d'u ‘r;)ﬁa nica% ¢
torna impossivel o mapeamento ipsis literis de um instrumento a.lgorltfmgo em sva (fon}rdpa i d}‘s(ll fonica ¢
da extensdio de exccugfo. Sabemos também que um instrumento a}gommwo é constl@do ,nAa realidade nfio de
um vinico instrumento no sentido tradicional da 1')alavm,lmals9 ;161;1, representa uma familia de instrumentos

ic interligados (Arcela & Ramalho, 1991; Azcela, . o 4
genéiﬁﬁiiﬁf:ﬁ:ﬁdfraiﬁo; respeito da construgéio dos instrumegtos algoritmifos diz respeito & te\:lmporalsfél)z;\ie
relativa e ndo absoluta de suas envoltorias de amplitude. Na a?ual 11_nplcmemagao do grograma de smtfsc d{;
A (Arcela, 1989), as unidades-h tem a sua envoltoria de amplitude 1mplen1e11§ada de tal forma c!ue.osn ;;nspo(}icm
cada segmento da envoltéria variam cmr; a dura%ﬁo da n(c)lta exccutada e 0s instrumentos musicais

ie igni i es segmentos relativa a duragfo da mesma. o i

Vand%?nfligsrtl:)ﬁsea;‘g C};f; :omga-se impraticdvel tentarmos maped-los fliretameme ¢ o5 principais n}}i\ra’met;os
passiveis de mapeamento a nosso ver portanto sdo a extensdo executavejl de gada mstr-umento si onllco‘ ¢
levantamento minucioso dos transientes de ataque dos fESMOS, q\ue gntao scnam~cla551ﬁceé<'ios e escal Oncll os
temporalmente em relagio 4 sua contrapartida algoﬁtquca no Ambito da duragag ’de’c{q\ a tnolta e;(:;::ei 2
mapeando-os pelo critério de maior ou menor percussividade. ?omo ponto de paﬁlc‘icvl para ,es. edevq oo
usamos a defini¢io de transientes de ataque como sendo o perfodo de 1,empo a partir do 19101096;) Sl}ITlfi]t'(~n()s
ponto o qual a sua magnitude esteja 3 decibéis aci,ma‘ do estado continuo (Luce & Clark,). Falta
agora definir o seu correspondente na orquestra algoritmica.

oDefinigio: Podemos considerar que o correspondente algoritmico de transiente de ataque de uma

unidade-h, correponde ao lapso de tempo entre o instante inicial € o ponto de quebra da epvoltona com 2 maloe
amplitude ¢ por conseguinte um instrumento com mais de uma unidade-h possuird tempo de d“:fl:ilo
correspondente a unidade-h com predomindncia achstica. sobre as demais de acordo com o Teorema do Esta
de Equilibrio (Arcela, 1984). ‘ o . ‘
A partir deste teorema, podemos entdo extrair duas informagdes importantes para 0 n0Sso mgpeamcmto. N
1. O Tempo de Ataque de um instrumento serd o tempo de ataque da unidade-h predominante entre
i S i elagio 2 40 da mesma.
ativas para uma determinada nota com relagfo & durag csma ‘ N
ZpO som de altura de uma determinada nota serd a freqiéncia especificada na mesma, multiplicada pe
ordem da unidade-h predominante entre as ativas para aquela nota.

| Simpésio Brasileiro de Computacio e Misica 151

Além disso os instrumentos sfio mapeados com a informacdo ortoestereofonica constante da carta ¢ isto
significa que na realidade teremos duas orquestras que idealmente deveriam executar suas respectivas partituras
ortogonalmente posicionadas (Arcela, 1984, 1986).

Em relagdo 4 amplitude, esta serd o resultado da multiplicacdo da amplitude da nota pela maior amplitude
da unidade-h ativa a ela associada, mantendo assim o escalonamento dindmico entre as diversas notas ¢
instrumentos que as executarfo.

Quanto aos tempos de inicio e duragio de cada nota mapeada, estes sdo multiplicados por uma constante
que depende tanto da figura adotada como unidade de tempo quanto da resolugdio do sequenciador MIDI
utilizado. Na atual implementagfio o valor de duragiio ! da carta espectral corresponde & fusa ¢ a resolugio
empregada € de 120 divisdes por seminima.

A partir destas concluses podemos agora definir um algoritmo de orquestragio sinfonica das cartas
espectrais. Foram implementados trés modelos de orquestragdo, em um crescendo de complexidade
interpretativa que acreditamos poderfio gerar resultados matemética e musicalmente acabados.

Modelo 1

A partir da andlise dos dados contidos em cada nota individualmente relacionados ao instrumento que a
executa, extraimos as informagdes necessdrias ao mapeamento da mesma para um e somente um instrumento
sinfonico da seguinte forma:

1. Som de altura: Temperamento da freqiiéncia da nota multiplicada pela ordem da unidade-h com
predomindncia acistica sobre as demais ativas para aquela nota multiplicada pela transposi¢do constante do
cabegalho da carta espectral.

2. Mapeamento: A partir do som de altura sdo selecionados entre os instrumentos que possuam extensio
compativel aqueles com o tempo de ataque mais préximo do tempo de ataque do instrumento algoritmico, caso
o tempo de ataque da nota seja maior do que o maior tempo de ataque dos instrumentos ndo-percussivos, a nota
¢ mapeada para flauta ou cordas pois sdo os instrumentos com ¢ maior tempo de ataque como nos mostram as
tabelas 1 ¢ 2. Caso o tempo de ataque da nota seja menor do que o menor tempo de ataque dos instrumentos
percussivos a nota € mapeada para um instrumento de percussio com altura indefinida de acordo com a tabela
6. Finalmente ¢ mapeado aquele que tenha o seu centro de banda passante espectral mais proximo do som de
altura. No caso dos instrumentos percussivos ainda levamos em conta a proximidade entre a duragio da nota ¢
as duragdes totais de suas envoltérias de amplitude de acordo com a tabela 6.

Conclusdo: Este mapeamento prevé que cada uma das notas executadas originalmente scja carreada para o
instrumento mais apto a executd-la, tanto em relagio a suas caracteristicas originais de maior ou menor
percussividade quanto 4 sua compatibilidade em altura, extensdio e velocidade de articulagio pois as notas mais
longas naturalmente tenderdo para instrumentos mais lentos de ataque e vice-versa.

Caracteristica: A orquestra resultante torna-se viavel de execucio por uma orquestra tradicional ou pelo
sistema General MIDI padrio, isto é, multitimbral a 16 partes e polifonico a 24 vozes no minimo, com uma
complexidade de execugio orquestral moderada.

Modelo 2

A partir da andlise dos dados contidos e cada nota individualmente relacionados a0 instrumento que a
exccuta, extraimos as informagBes necessirias ao mapcamento da mesma para um ou 1mais instrumentos
sinfonicos passiveis de executd-la da seguinte forma:

1. Som de altura: Idem ao Modelo 1.

2.Mapeamento: Idem ao Modelo 1, s6 que agora, ndo apenas um, mas todos os instrumentos selecionados
sdo mapeados para aquela determinada nota.

Conclusdo: Este mapeamento prevé que cada uma das notas executadas originalmente seja carreada para
um ou mais instrumentos aptos a executd-la, tanto em relagdo a suas caracteristicas originais de maior ou
menor percussividade quanto a sua compatibilidade em altura, extensfio ¢ velocidade de articulagdo.

Caracteristica: Este método introduz a utilizagdo da combinagdo instrumental em cada naipe, de maneira
Que agora ndo feremos apenas um instrumento, mas sim um grupo de instrumentos executando uma
determinada nota em unissono. Através deste sistema obteremos resultados timbricos muito mais elaborados do

XIV Congresso da Sociedade Brasileira de Computacio

que através do primeiro, mantendo ainda uma certa portabilidade tanto em relagio a execugfio MIDI quanto
sinfonica.

Modelo 3

A partir da andlise dos dados contidos em cada nota individualmente relacionados ao instrumento que a
executa, extraimos as informagdes necessdrias a0 mapeamento da mesma para tantos instrumentos sinfOnicos
quantas sejam as unidades-h que a executam,

1. Som de altura: Temperamento da fregiiéncia da nota multiplicada pela ordem de cada unidade-h ativa
multiplicada pela transposi¢io constante do cabegalho da carta espectral gerando assim um niumero de notas
correspondente ao niimero de unidades-h ativas cada uma com sua respectiva fregiiéncia.

2 Mapeamento: Idem ao Modelo 2, 6 que agora ao invés de um ou mais instrumentos executando uma
nota em unissono, teremos como resultado o mapeamento de um instrurwento para cada unidade-h ativa.

Conclusio: Neste Modelo utilizamos um principio de combinagio orquestral que encontra o seu maximo
expoente ro compositor impressionista francds Maurice Ravel, que em sua obra prima "Bolero”, utilizou os
instrumentos da orquestra néo como entidades espectrais isoladas mas sim como se fossem “unidades-h" de um
instramento maior, cada um executando o que seria wm harmdnico de um som espectral mais amplo, em uma
espécic de sintese aditiva orquestral. Deste modo podemos utilizar os mais variados recursos de combinagio
instrumental possibilitando a obtengio de efeitos combinatorios os mais diversificados possivel ¢ levando ao
extremo o que seria a esséncia da orquesiragdo: a técnica da combinagfo instrumental.

Caracteristica: Utilizagio plena dos recursos de combinago instrumental de uma orquestra sinfonica
possibilitando a geragio das mais diversas configuragdes instrumentais. Capacidade de obtenglio de timbres
orquestrais inéditos ¢ instigantes perceptualmente.

QO Programa

Implementado em estagdo SUN SparcStation na linguagem C com interface gréafica gerada pelo DevGuide,
utiliza como entrada arquivos no formato *.car gerados pelo CARBON e gera um arquivo de saida no formate
* ces no qual os t6tulos de instrumentos algoritmicos efou suas unidades-h sd0 substituidos ao nivel de cada
nota pelo instramento sinfonico e mudanca de programa MIDI correspondente além de conter os outros dados
tecessarios & execugdo MIDI ou sinfonica. Ao término da execucio do Modelo selecionado, ¢ aberta uma janela
na qual pode-se visualizar instantancamente quais foram os instrumentos sinfonicos mapeados. Além disso o

programa conta com um visualizador grafico das envoltorias de amplitude ¢ grafico de barras das ordens ¢

amplitudes maximas de cada unidade-h correspondente aos instrumentos constantes da carta sendo trabalhada,
além de possibilitar a escolha da instrumentagio desejada, permitindo a definicdo de quais instrumentos estardo

ativos para mapeamento, possibilitando assim a geragio desde partituras para grande orquestra até conjuntos

MENOICS.
Consideragtes Finais

O Orquestrador MIDI Sinfnico fornecera ao LPE os meios de transcrigio ¢ conversdo necessarios a wma

execugiio MIDI ou sinfonica das cartas espectrais geradas algoritmicamente ¢ neste sentido, ¢ wm projeto

voltado exclusivamente para as aplicagdes diretamente relacionadas com o ambiente composicional do LPE.

Agradecimentos

Sou especialmente grato a0 meu orientador de mestrado Aluizio Arcela, agradecimentos esses extensivos
2 minha instituigio de origem, Departamento de Misica da UFPe ¢ ao Departamento de Ciéncia da
Computacdo da UnB por acreditarem na interdisciplinaridade académica. :

| Gimp6sio Brasileiro de Computagdo e Misica 153

Referéncias

Aikin, J. & Marans M. & Rule, G. (march 1993). General MIDI. Keyboard.
Arcela, A. & Ramalho, G. (1991). A formal composition svstém based on the the i
Proceedings of the ICMC, Montreal. ’ cory of Timertiees.
Arcela, A. (1984). As drvores de Tempos ¢ a configuragdo Genética dos Int ! icai [
Doutorado, PUC, Rio de Janeiro. crvalos Musicais. fese de
Arcela, A., (1986). Time-Trees: the inner organization of intervals. Proceedings of the 12th International
Computer Music Conference (ICMC), pp 87-89, Haia.
Arcela, Alui"/,io (1989). CARBON, Relatorio Técnico LPE890 1
Arcela, Aluizio (1994). A Linguagem SOM-A para Sintese Aditiva, Anais do 1° Congresso Brasileiro de
Computagdo e Musica, Caxambi, MG.
Arcela, Aluizio (1993). DECIBEIS, DPP - Projetos Gerais
Beauchamp, J.W. (1974). Time-variant spectrs ioli Y
05 1004) nt spectra of violin tones. J.Acoust.Soc.Am., Vol.56, N.3, September
Berlioz, H. & Strauss, R. (1948). Treatisc on Instrumentation. Kalmus, New York, N.Y
Carleen, M.H. (1973). Instrumeniation and Methods for Violin Testin, 1 of] j
cen g. Journal of the Audio FEj j
Sociely, September X, Volume 21, Number 7, pp.563-570. / ‘ e
Chnsllap, Richard S. & Davis, Robert E. & Tubis, Arnold & Anderson, Craig A. & Mills, Ronald 1. &
Rossing, Thomas D. (1984). J. Acoust. Soc. Am. November 76(5) 7 '
Fletcher, H. & Basset L. (1978). Some experiments with the bass drum. J. Acoust. Soc. Am., 64(6), Dec.
Fletcher, N.H. (1975) Acoustical correlates of flute performance technique. J.Acoust.Soc.Am., Vol.57, No.1
January, pp.233-237. ’ S
Jachino, C. (1950). Gli Strumenti D'Orchestra, Curci, Milano.
Luce, D & Cllark, .M‘ (1965). Durations of Attack of Nonpercussive Orchestral Instruments. Journal of the
Audio Engineering Society, July, volume 13, number 3, pp. 194-199.
Luce, D. & Clark, M. (1967). Physical Correlates of Brass-Instrument Tones. Jo i j
X " . Journal of the A St
America, Volume 42, Number 6, pp. 1232-1243. el ofthe Acoustic Society of
Mancini, Henry (1973). Sounds and Scores. Northridge Music, inc. USA.
Meireles, Alex (1994). NOTACOR, Impressdo de Partituras em Cores, Anais do 1° jlei
s X C
Computagdo e Musica, Caxambil, MG. ’ ongreoso Brasiteiro de
Pgreira, Antonio (1994). MAESTRO, Tese de Mestrado em andamento LPE~CIC-UnB.
P¥erce, JR. (1983). The Science of Musical Sound. American books, Inc., New York.
PlS[O.n, W. (1955). Orchestration. W.W .Norton & Co., Inc., New York.
Ros]snllg, T. & Bork, I. & Zhao, H. & Fystrom, D. (1992) Acoustics os snare drums. J. Acoust. Soc. Am. 92(1)
uly. '
Seashore, C.E. (1967). Psychology of music. Dover Puablications, Inc., New York.

155

| Simpésio Brasileiro de Computacio e Misica

EDITOR DE PRECEITOS INTERVALARES

RICARDO RIBEIRO DE FARIA CASTRO
Laboratdrio de Processamento Espectral
Departamento de Ciéncia da Computagdo
Universidade de Brasilia
Brasilia, DF, CEP. 70910-900

RESUMO

A andlise do Intervalo musical, composto pela simultaneidade de dois tons
puros, revela sob a Gtica do Objeto Intervalar, um sistema de informagdes de
natureza musical, organizado de forma hierdrquica pelas Arvores de Tempos. O
Objeto Intervalar pode ser representado por um Preceito, ou um conjunto de
parimetros que o definem como entidade eucilidiana, e que possibilitam a
construgiio da Arvore de Tempos de forma algoritmica, ¢ a extragfio de seu interior
de informagdes de natureza geométrica ¢ temporal. As Arvores, por apresentarem
uma natureza de incompletude, podem ser acasaladas de forma geométrica. Assim
se caracteriza 0 método de composigfio algoritmica calcado no acoplamento de
objetos intervalares. Tal acoplamento pode ocorrer sob diversas formas, dependo do
posicionamento no espago euclidiano do Objeto Intervalar, bem como da escolha
dos vértices a serem usados no acoplamento. A necessidade de um ambiente
computacional que suporte a modelagem de Objetos Intervalares, € que organize
de forma coerente as suas informagSes, possibilitando a manipulagio de forma
interativa ¢ dinfimica dos parimentros relativos ao acoplamento geométrico,
molivou o projeto ¢ implementagiio de um sistema Editor de Preceitos Intervalares,
objeto deste trabalho.

O OBJETO INTERVALAR

O intervalo musical € constituido por um par de frequéncias que distam uma da outra numa raziio fixa, e
ode ser visto como a menor unidade de um espectro sonoro musical. A necessidade de se compreender com
or profundidade as caracteristicas do fendmeno intervalar ¢ um melhor entendimento da forma auditiva é
motivou a ampliagiio dos conceitos existentes através da andlise mais profunda do fenémeno intervalar.
buscou-se através da observagio da geometria da composicio ortogonal de sinais senoidais
nonicos, uma representagio geoméirica tridimensional para o intervalo musical.

O Objeto Intervalar pode ser descrito como o modelamento do fendmeno Intervalar através da
mposigio ortogonal de um MHS (Movimento Harmonico Simples) ¢ de um MCU (Movimento Circular
forme) , dado pelas seguintes cquagdes:

y=a sen (2uSt/T + ¢g) (MHS)

Y=Y+ 2ust)/t L r=b (MCU),

e S ¢ s sfio inteiros primos entre si correspondentes A razao entre as frequencias; ¢ a fase inicial de y e

a fase inicial de Y. ¢ T é o periodo do movimento intervalar. Verifica-se também que 0 movimento
bratério ¢ caracterizado pela ordem de frequéncia associada a0 MHS, tendo 0o MCU a fungio de apoio
Utural na unidade intervalar.

trajetéria descrita por um ponto cartesiano, submetido ortogonalmente a esses dois movimentos, &
(@ num clilindro, cuja altura ¢ raio dependem das amplitudes das componentes de frequéncia do
alo. Ao longo desta trajetéria, viio ocorrendo auto-intersegdes. que dio origem a um conjunto de pontos,

hinados Momentos. que demarcam os lapsos de tempo a0 longo da sequéncia de auto-intersegoes
L, 1984)

ESTADO ENAO-ESTADO DO OBJETO INTERVALAR
Observagiio dos Objetos Intervalares demonstra que, as frequéncias do intervalo podem estar

fldos dois Objetos distintos. cujas projegdes nos planos xz ¢ yz sio identicas, implicando na necessidade
Noduzir novos conceitoe A ox dEnein cimiltanea de die mcomnmnmt oe da Femm At n 4 e meem Ao ol

predomindncia de uma sobre a outra, ¢ a que predomina impoe o seu padrio espectral. O Estado (S) de um
Objeto Intervalr é caracterizado pela componente de frequéncia predominante, determinando o MHS dg
movimento intervalar, O Nao-Estado (s) € dado pela ordem de frequéncia mascarada, e que determing ¢
Movimento Circular, Um Objeto Intervalar se diz no Estado Baixo se a Ordem de Frequéncia do MHS for
menor que a ordem de frequéncia do MCU (S < s). A um ciclo completo do MHS executa-se mais de um
volta do MCU; e estard no Estado Alto se a ordem de frequéncia do MHS for maior que a ordem de
frequéncia do MCU (S > s). A um ciclo completo do MCU corresponde mais de um ciclo do MHS (Arcela,
1984).

Estado Baixo Estado Alto

(t)

- SO

[¢10)]

SEGMENTACAO DA LISTA DE DURACOES EM CICLOS DO MHS

A sequéncia de tempos determinada pelas auto-intersegGes resultantes do movimento intervalar depende
fundamentalmente da raziio entre as frequéncias do intervalo (m:m); do Estado do Intervalo. ¢ da duragio
inicial do movimento dada pelo tempo gasto até a ocorréncia do primeiro momento.

Mas o Objeto Intervalar encerra em seu interior mais informagdes do que apenas uma sequéncia de
duragGes. A partir da formagfo do primeiro ponto, a cada ciclo complelo do MHS, um novo conjunto de
duragGes € produzido. Assim, a segmentagfio das duragdes em ciclos do MHS, desvenda uma estrutura
arborescente, que apresenta na mudanga de um nivel para outro, a ocorréncia de repetigdes de nimeros ou
desdobramentos em dois ou mais.

A organizagiio do intervalo através da segmentagio das sequéncias dd origem a seis espécies de drvores
(Primordial, Telescopica, Residual, Especular, Complexa), que podem ser computadas algoritmicamente,
prescindindo-se do fenémeno intervalar. As drvores sio organizadas em Florestas de acordo com o Estado do
objeto. Ao Estado Alto estd associada a Floresta Omega, e ao Estado Baixo a Floresta Alfa (Arcela, 1984).
Por exemplo, o intervalo 4:5, no estado baixo, e primera sequencia, possui a seguinte Floresta de Tempos:

156 XIV Congresso da Sociedade Brasileira de Computag§§

, Gimpésio Brasileiro de Computacio e Mdsica

COORDENADAS DE UM MOMENTO DO OBJETO INTERVALAR

A determinagio das coordenadas, no espago tridimensional, de um momento PO do objeto intervalar, cujo
stro estd na origem do sistema de coordenadas, se baseia nas seguintes equagdes do movimento, para o
gido Alto e Baixo, respectivamente:

MHS f(ty=a sen (2nmt)/t + dg) gty =b sen (2rnt)/T +7vp)
MCU Y()=vg + @m)/t ,R=b o) = g + 2mmt)/T , R=a

nde’ t ¢ o periodo do movimento, ¢ e7yq fases inicias. Portanto, as equagdes que definem as projecoes de
) sobre 0 €iX0s X, y e z sfo dadas por:

Estado POx =b sen g(t)

Baixo POy = f(t)
POz=b cos g(t)

Estado POx = g(t)

Alto POy =a sen f(1)

POz =a cos f(t)

-0 caso geral. em que um objeto intervalar pode se situar em qualquer lugar do espago tridimensional
quer a aplicaglio de operagdes de translagio e rotaglio (através de operagdio matricial) sobre o objeto na
em do sistema de coordenadas, conduzindo-o & sua posicio destino.

CARTAS ESPECTRAIS

Uma nota musical ¢ caracterizada por sua frequéncia, amplitude, inicio e duragdo. Os nodos da Floresta
. Tempos possuem esta informagfo, resultado do préprio movimento intervalar (e que pode ser computada
goritmicamente). O Inicio da execugfio da nota pode ser calculado pela soma das duragdes dos nodos
feriores. A frequéncia e a amplitude dependem das coordenadas do nodo, e sio calculadas por um método
nominado de MHS Medidor; que produz a demarcagio de dois MCU's pela projecio do vertor velocidade
momento sobre os planos XZ e YZ do sistema de coordenadas. A cada MCU estd associado um MHS, cuja
wencia ¢ fungfio da velocidade escalar, ¢ cuja amplitude ¢ dada pelo raio do MCU. Portanto, as
formagdes necessdrias A construglio de uma partitura, composta por wma lista de notas, cada qual
marcando o seu inicio, duragfio, frequéncia ¢ amplitude. sio extraidas da Floresta de Tempos. A execugiio
ada nota € realizada por instrumentos algoritmicos também extraidos da Floresta. ¢ cujo contetido
cctral estd diretamente relacionado com a hierarquia dos nodos. Atualmente esta operagiio € realizada pelo
tema CARBON, que se constitui no instrumental base para a produgiio de cartas espectrais

SOM-A

As Cartas Espectrais, por sua vez, servem de base para o codmputo do sinal digital, que enviado a um
wersor Digital Analégico. complela o processo de composi¢io algoritmica, Atualmente esta operagio é
Izada pelo sistema SOM-A, que implementa o método de Sintese Aditiva para produgiio de sinais
ostrados. Utiliza dispositivos espectrais do tipo Oscilador a tabeta ¢ Acumulador Estéreo.

FLORESTA DE TEMPOS E O PRECEITO

As informagdes contidas nas Florestas de tempos sdo de natureza ritmica ¢ geométrica. Ritmica, pois

4 momento (que estd associado a um nodo da floresta) possui uma cinemdtica decorrente do fendmeno

Cvalar, a partir da qual podem ser computadas a amplitude ¢ frequéncia de cada momento. Geométrica,
4 floresta define uma hierarquia entre os nodos, que sdo conectados através de arestas, dando origem a

Tturas poliédricas. A estraglio de partituras naturais compultiveis do scu interior, caracleriza o Objeto
Malar como uma unidade contendo informagdes de natureza musical.

XIV Congresso da Sociedade Brasileira de Computacdo

Os dados necessarios ao mapeamento da floresta de tempos em um conjunto de notas e instrumentos
musicais so aqueles que caracterizam ¢ unificam o Obejto Intervalar. Tais informagdes, que recebem o nome
de Preceito, norteiam o processo de construgio algoritmica do Objeto, ¢ sAo as seguintes: as ordens de
frequéncia (m,n), as amplitudes (a,b), as fases iniciais do MHS ¢ do MCU, o Estado (alto ou baixo), 0§
deslocamentos ¢ as rotagdes do Objeto em relagio aos eixos X,Y e Z (Arcela, 1984). .

FORMA INACABADA E A NATUREZA GEOMETRICA DAS FLORESTAS

Dependendo do posicionamento da Floresta de Tempos no espago, pode-se obter diferentes melodias,
porém todas com o mesmo padrio titmico, e a primeira impressio é que constituem melodias inacabadas,
necessitando um complemento, ou acabamento da forma melodica, Por outro lado, a observagdo das estruturas
geométricas obtidas pela conexfio dos momentos do objeto intervalar por arestas de acordo com a hierarquia
pai-filho, tambem indica uma forma com partes inacabadas, formando uma estrutura poliédrica aberta.

E através da relagio hierdrquica dos nodos da floresta de tempos que surge a sua natureza geométrica /
poliédrica, pois os nodos da floresta que apresentam a relagio pai-filho stio conectados por uma aresta. Tal
relagiio indica que podem haver diferentes tipos de vértices na floresta em fungiio do niimero de arestas que a
ele convergem. Uma vez que os nodos das drvores que formam a floresta podem ser desdobrados no maximo
em trés outros nodos, verifica-se que o nimero maximo de arestas que podem convergir a um vertice é trés,
Como consequéncia, pode-se classificar os vértices em completos (contendo 3 arestas niio-coincidentes e nio
coplanares) e vértices incompletos (contendo duas ou menos arestas nio coincidentes) (Ramatho, 1992).

ACABAMENTO DE UM VERTICE / ACOPLAMENTO GEOMETRICO

Baseando-se no fato de que toda floresta de tempos constitui uma estrutura poliédrica aberta (contendo
vértices incompletos), define-s¢ o acabamento de um vértice como sendo a sua passagem para a condigiio de
vértice completo, através do acoplamento geométrico entre florestas, cujo objetivo é produzir o
compartilhamento no espago de vértices das florestas acopladas. A muydanga de um vértice incompleto para a
condigiio de vértice completo, depende da sua valéncia, que € o nimero de vértices necessdrios para o vértice
se tornar completo.

A possibilidade de um vértice incompleto passar & condi¢fio de vértice completo decorre do fato de que
posicionados no mesmo lugar do espago passam a compartilhar as suas arestas, implicando na mudanga da
valéncia de ambos. Através de operagdes algébricas de translagdo, rotagio e escala (Foley, 1984) sobre uma
das florestas a serem concctadas (floresta mével), consegue-se promover conexdes. A aceitagdio do
acasalamento depende da nfio violagio do critério do estado (as dimenstes finais da floresta mdvel ndo podem
implicar em mudanga do estado do objeto) e da submissio das florestas envolvidas na regra de crescimento
(que tenta garantir um grau de convergéncia da abertura/fechamento da estrutura poliédrica resultante)
(Ramalho, 1992).

Uma vez que cada Objeto Intervalar é caracterizado pelo seu Preceito, apds o acoplamento geométrico
entre Objeto distintos, o Preceito da Forma resultante ¢ composto pelos Preceitos das Florestas que foram
conectadas i forma resultante. Portanto, através do acoplamento geometrico ¢ possivel a construgio de formas
sénicas de rara complexidade. As diversas possibilidades de posicionamento do Objeto intervalar no espago
euclidiano abrem uma infinidade de possibilidades de padtdes ritmicos, bem como diversas possibilidades de
acoplamento. Assim, neste processo, a identificagio da posigio mais adequada para a floresta fixa, além da
seleciio dos vértices que farfio parte das conexdes, indicam a necessidade de um ambiente computacional
capaz de dar suporte lanto para a construgfio de Objetos Intervalares a partir de Preceitos, bera como
monitorar € oferecer informagdes que possam nortear 0 processo de composi¢io algoritmica baseado no
acoplamento geométrico de Objeto Intervalares.

EDITOR DE PRECEITOS INTERVALARES

O Editor de Preceitos Intervalares ¢ um ambiente de computagio grifica projetado para manter de forma
coerente ¢ organizada o universo de informagges relativas a Objetos Intervalares, bem como manier estruturas
de dados capazes de suportar mais de um Objeto compartihando o espaco euclidiano, passfveis de serem
acoplados geométricamente. O sistema se propde a dar suporte ao computo de informag8es que possam
nortear a escolha do melhor posicionamento da floresta fixa, bem como orientar a escotha dos vértices que
fardo parte do acoplamento, possibilitando ao pesquisador investigar as possibilidades de conexdo de forma
dgil e interativa. Todo a funcionalidade oferecida neste processo tem como objetivo, em ultima andlise, a

| Simpésio Brasileiro de Computacio e Misica

159

_ extragio do Preceito resultante dos acoplamentos realizados, que constitui atualmente a entrada do sistemal

CARBON, que implementa o mapeamento das Florestas de Tempos em Carta Espectral

Uma vez que o Editor realiza o codmputo da quase totalidade das informm;ées.relativas aos Objety
Intervalf_ires, seu segundo objetivo é servir como um ambiente de apoio aos alunos de Pos-graduacio o
especializagio em processamento de sinais ¢ computagio sénica. A constru¢iio passo a p'\sgso d(f Oi)'c?m
[ntervalares, através da montagem das suas partes constituintes (cilindro base do Objeto, ‘tragado da c}:r\(/)zsx

, relﬂliY“ a0 movxm_ento intervalar e suas projegdes nos planos XZ e YZ, a determinagdo dos momentos
_ associados as auto-intersegdes, a conexio dos momentos por arestas de acordo com estrutura hierdrquica dada

ela Floresta de Tempos; a representaciio grafica da propria Floresta, e a matriz cilindrica com as duragdes)

possibxlltara uma dinfimica maior ao processo de aprendizado da teoria das Arvores de Tempos

Um terceiro 'aspeclo do sistema ¢ a capacidade de se verificar a representagiio auditiva dos Objet
mervala_res selecionados, uma vez que o sistema SOM-A serd parte integrante do Editor, funcionando oo
gm subsistema gerador de sinais amostrados. Esta integragio poderd ser realizada p,elo acoplame ;30"(;0
1gumas das fungGes de mapeamento de Florestas de Tempos em cartas espectrais contempladﬂspe‘:lo sli] (t) :
CARBON. Desta fo_rma, o editor se constituird num ambiente integrado capaz de oferecer su orté)hs di rersas
per?gﬁes sqbre Objetos Intervalares (construgio, visualizagio da representagio tridimension[:ll simulalvﬁersgs
movxmel?to lntervvalar, verificag@o do sinal correspondente, acoplamento geométric itora S eacio
o Preceito relativo & forma resultante. ’ 10 monitorado ¢ extragio
0 gmbxenle operacional selecionado para a versdo atual ¢ a plataforma Windows, uma vez que o si
1ece_ss_n'a de suporte a interfaces graficas para usudrio (GUI). Além disso, o ambi‘e‘nle ‘orientgd . s'lsmllnZl
OSSlblll({l a organizagio mais racional das diversas visdes que se pretendc‘oferecer bem como (;ﬂ J.il'"e aS
fau Fle bef:x‘dﬂde na criaghio das janelas pelo usudrio. E um fator relevante na es‘célha deste an?b'rmltlr U"}
ssociado & caracteristica de orientagio a objetos da programagio sobre ‘0 Window. opict eSt?
mplementagio de problemas de alta complexidade. > propiio

REFERENCIAS BIBLIOGRAFICAS

ARCELA, A. As Arvores de Tempos e a Configuragiio Genética dos Intervalo Musicais,
Tese de Doutorado, PUC, Rio de Janeiro, 1984 h
kAMALHO, G.L.Um SistelT\a de Geragfio de Teoremas Musicais baseado na Geometria
das Arvores de Tempos. Tese de Mestrado, CIC-UnB. Brasilia, 1992,

OLEY, J. D. Fundamentals of interactive computer graphics, New York, 1984.

| Simpésio Brasileiro de Computacdo e Misica 161

The SmQKe music representation, description language, and interchange format

Stephen Travis Pope
The Nomad Group, Computer Music Journal, CCRMA
P. Q. Box 60632, Palo Alto, California 94306 USA
Electronic Mail: stp@CCRMA Stanford.edu

ABSTRACT

.o Smallmusic Object Kernel (SmOKe) is an object-oriented representation, description language and interchange format for
isical parameters, events, and structures. The author believes this representation, and its proposed linear ASCII description,
he well-suited as a basis for: (1) concrete description interfaces in other languages, (2) specially-designed binary storage and
ferchange formats, and (3) use within and between interactive multimedia, hypermedia applications in several application do-
1s.

textual versions of SmOKe share the terseness of note-list-oriented music input languages, the flexibility and extensibility
Fereal’” music programming languages, and the non-sequential description and annotation features of hypermedia description
rmats. This description presents the requirements and motivations for the design of the representation language, defines its
« concepts and constructs, and presents examples of the music magnitudes and event structures. The intended audience for
discussion is programmers and musicians working with digital-technology-based multimedia tools who are interested in
design issues related to music representations, and are familiar with the basic concepts of software engineering. Two other
gments ([Smallmusic 1992] and [Pope 1992]), describe the SmOKe language, and the MODE environment within which it
een implemented, in more detail.

L INTRODUCTION

The desire has been voiced (ANSI 1992; Dannenberg et al. 1989; MusRep 1987; MusRep 1990; Smallmusic 1992), for an ex-
sive, flexible, abstract, and portable structured music description and composition language. The goal is to develop a kernel
cription that can be used for structured composition, real-time performance, processing of performance data, and analysis.
hould support the text input or programmatic generation and manipulation of complex musical surfaces and structures, and
ir capture and performance in real time via diverse media. The required language have a simple, consistent syntax that pro-
es for readable complex nested expressions with a minimum number of different constructs. The test of the language and its
erlying representation will be the facility with which applications can be ported to it. '

allmusic Object Kernel consists of primitives for describing the basic scalar magnitudes of musical objects, abstractions for
sical events and event lists, and standard messages for building event list hierarchies and networks. Structures in the under-
g music representation can be described in a text-based linear format, and in terms of the of in-memory data structures that
zht be used to hold them. It is intended that independent parties be able to implement compatible abstract data structures,
crete interchange formats, and description languages based on the formal definition of SmOKe (Smallmusic 1992).

¢ naming conventions and the code description examples use the Smalltalk-80 programming language (Goldberg and Robson
9), but the representation should be easily manipulable in any object-oriented programming language. For readers unfamil-
ith Smalltalk-80, another document (available via InterNet ftp from the file named “reading.smalltalk.t” in the directory
onymous@ccrma-ftp.Stanford.edu:/pub/st80™), introduces the language’s concepts and syntax to facilitate the reading of the
6 examples in the text. In this document, SmOKe examples are written between square brackets in sans-serif italic typeface.
2: REQUIREMENTS AND MOTIVATIONS
veral of the groups that have worked on developing music representations have started by drawing up lists of requirements
such a design, and separating out which items are truly determined by the underlying representation, and which are interface
application issues. The Smallmusic group developed the following list, using the results of several previous attempts (see
ons above) as input. SmOKe shall provide or support:

« abstract models of the basic musical quantities (scalar magnitudes such as pitch, loudness or duration);

sound functions, granular description, or other (non-note-oriented) description abstractions;

flexible grain-size of “events” in terms of “notes,” “grains,” “clements,” or “textures”;

~* description/manipulation levels including event, control, and sampled function;

» hierarchical event-tree (nested lists) for “parts,” “tracks,” or other parallel or sequential structures;

separation of “data” from “interpretation” (what vs. how in terms of having interpretation objects such as the instru-

162 XIV Congresso da Sociedade Brasileira de Computacso | Simpésio Brasileiro de Computagio e Misica 163

ment/note, voice/event, or performer/part abstractions);

« abstractions for the description of “middle-level” musical structures (e.g., chords, clusters, or trills);

o annotation of events supporting the creation of heterarchies (lattices) and hypermedia networks;

» anmotation including common-practise notation possible (application issue);

» description of sampled sound synthesis and processing models such as sound file mixing or DSP;

» possibility of building convertors for many common formats, such as MIDI data, Adagio, note lists, HyTime, DSp Forma) ‘ ‘ . . ' .
code, instrument definitions, mixing scripts; and K SCOTE consists of one or more parallel or sequential event lists whose events may have interesting properties and links,

o possibility of parsing live performance into some rendition in the representation, and of interpreting it (in some ref s, Cvents, and event lists are described using class messages that create instances, or using immediate objects and the
tion) in real-time (application issue related to simplicity, terseness, etc.). .. fix operators. These can be named, used in one or more event lists, and their properties can change over time. There

. . defined “fevel” or “grain-size” of events; they can be used at the level of notes or envelope components. patters,

The same applies to event lists, which can be used in parallel or sequentiaily to manipulate the sub-sounds of a com-
The SmOKe representation can be summarized as follows. Music (i.e., a musical surface or structure), can be represented a n or as “motives,” “tracks,” or “parts.” Viewed as a document, a score consists of declarations of, or messages to,
series of “events” (which generally last from tens of msec to tens of sec). Events are simply property lists or dictionaries;: th ént ists and other SmOKe structures. It can resemble a note list file or a DSP program. It is structured as executable
can have named properties whose values are arbitrary. These properties may be music-specific objects (such as pitches or spag g0 expressions, and can define one or more “root-level” event lists. There is no “section” or “wait” primitive; sections
positions), and models of many common musical magnitudes are provided. Events are grouped into event lists as records ¢ posed t0 be sequential must be included in some higher-level event list to declare that sequence. A typical score will
sisting of relative start times and events. Event lists are events themselves and can therefore be nested into trees (i.e., an eve; 4 name a top-level event list, and then add sections and parts to it in different segments of the document.
list can have another event list as one of its events, etc.); they can also map their properties onto their component events, T] 5: SmOKe MUSIC MAGNITUDES
means that an event can be “shared” by being in more than one event list at different relative start times and with different pro . I , X T i = . ,
erties mapped onto it. Events and event lists are “performed” by the action of a scheduler passing them to an interpretation o descnpnve m{)dc}s for the basic mus1c-spe'C1f1c ma'gnm}de types such as pitch, lopdness or duration are the foundation
ject or voice, Voice objects and applications determine the interpretation of events® properties, and may use “standard” prope o, These are similar to Smalltalk-80 magnitude objects in that they represent partially- or fully-ordered scalar or vector
names such as pitch, loudness, voice, duration, or position. Voices map event properties onto parameters of I/O devices; th with (e.g:) numerical or symbolic valges. §Sme c?f t,l}elr beha_vt?r dep’(j,nds on what th&?y sm‘.ld for, and some Of, i on
can be a rich hierarchy of them. A scheduler expands and/or maps event lists and sends their events to their voices. Stored da 'ro stored. These two aspects are the objects’ “species” and their “class.” The pitch-species objects 440.0 Hz and "ci3',
functions can be defined and manipulated as breakpoint or summation parameters, “raw” data elements, or functions of le, share some behavior, and can be mixed in arithmetic with (ideally) no loss of “precision. The expression (261.26

above. Sampled sounds are also describable, by means of synthesis “patches,” or signal processing scripts involving a vocab I key number 8) should be handled differently than (1/4 beat + 80 msec). The class of a music magnitude depends on
lary of sound manipulation messages. : i of their values (e.g., floating-point numbers or strings), while their species denote what they represent. Only the spe-

ible to the user.
gnitudes can be described using prefix class names or post-fix type operators, e.g., [Pitch value: 440.0] or [440.0
3" pitch), [Amplitude value: 0.7071] or [-3 dB]. The representation and interchange formats should support all man-
ird mixed-mode music magnitude expressions (e.g., [('c4’ pitch) + (78 cents) + (12 Hz)]), with “reasonable” assump-
1e semantics of the operation (coerce to Hz or cents?). Applications for this representation should support interactive
£ music magnitude objects that support the manipulation of the basic hierarchy described below, as well as its exten-
ght-weight” programming.
on the next page shows the class hierarchy of the model classes—those used for the species (i.e., representation)—
 side, and the partial hierarchy of the concrete (implementation) classes on the right. The class inheritance hierarchy
by the order and indentation of the list. The lines indicate the species relationships of several of the common music
. The examples below demonstrate the verbose (class message) and terse (value + post-operator) forms of music
description, Note that comments are delineated by double quotes (or curly braces) in SmOKe.

51ance (strings are written between single-quotes in SmOKe [and Smalltalk]). All central classes are assumed to sup-
istency through naming” whereby any object that is explicitly named gets stored in a global dictionary under that name
pnciﬂy released. What the exact (temporal) scope of the persistency is, is not defined here. The (lexical) extent is as-
e as smOKe “document” or “module.”

b=t

4: THE SmOKe LANGUAGE
41L0 Description
The SmOKe music representation can be linearized easily in the form of immediate object descriptions and message expx{
sions. These descriptions can be thought of as being declarative (in the sense of static data definitions), or procedural (in
sense of messages sent to class “factory” objects). A text file can be freely edited as a data structure, but one can compile it w
the Smalltalk-80 compiler to “instantiate” the objects (rather than needing a special formatted reading function). The pos
expression format taken from Smalltalk-80 (receiverObject keyword: optionalArgument) is easily parseable in C++,.Li
Forth, and other languages.
4 ir
The basic representation itself is language-independent, but assumes that the following immediate types are representable
ASCII/ISO character strings in the host language:

« arbitrary precision integers (at least very large), : nitude Example
« integer fractions (i.e., stored as numerator/denominator, rather than the resulting whole or real number), tion value: 1/16) asMS “Same as [1/16 beat]; answers 62.”
» 32- (and 64-bit) (7-, 12-place precision) floating-point numbers, h.value: 36) asHertz “Same as [36 pitch]; answers 261.623.7
° arbitrary-length ASCII/ISO strings, ude value: ‘ff’) asMidi “Or [#ff ampl]}; answers 106.”
« unique symbols (i.c., strings managed with a hash table), ' pitch), (‘pp’ dynamic) “Terse examples; value + post-op.”
« 2. and 3-dimensional points (or n-dimensional complex numbers) (axial or polar representation), and Hz), (1/4 beat), (-38 dB), (56 velocity), (2381 msec), (00 position)
« functions of one or more variables described as breakpoints for linear, exponential or spline interpolation, Fourier 6: SmOKe EVENT OBIECTS
sums, series, sample spaces, and probability distributions. view of events is as Lisp-esque property lists, dictionaries of property names and values, the relevance and inter-

The support of block context objects (in Smalltalk), or closures (in LISP), is defined as being optional, though it is consi fw}fllom is leftup to oLl.mers (voices and applications). Events need not be thought of as mapping one-to-one to ‘nolgs,”
important for complex scores, which will often need to be stored with interesting behavioral information. (It is beyond the S0 should be able o faithfully represent note-level objects. There may be one-to-many or many-o-one relationships
of the present design to propose a metalanguage for the interchange of algorithms.) Dictionaries or property association h‘ts and “notes.” Events may have arbitrary properties, some of whom will be common to most musical note-level
must also either be available in the host language or be implemented in a support library (as must unique symbols and e\ has duration, pitch or loudness), while others may be used more rarely or only for non-musical events.

associations in some cases [e.g., std. C]). ertics can be accessed as keyed dictionary items (i.e., events can be treated as record data structures), or as direct
. events can be thought of as purely programmatic). One can set an event to be “blue” (for example), by saying
#color put: #blue "dictionary-style accessing’] or more simply [anEvent color: #blue "behavioral access-
Y #string means unique symbol whose name is string). Events can be linked together by having properties that are
W other events or event lists, (as in [anEvent #soundsLike: otherEvent]), enabling the creation of annotated hy-

4,3 Naming and Persisten

The names of abstract classes are known and are treated as special globals. The names of abstract classes are used wh :
possible, and instances of concrete subclasses are returned, as in [Pitch value: '¢3'] or {3’ pitch] both returning a Sy

| Simpdsio Brasileiro de Computacio e Miisica 165

164 XIV Congresso da Sociedade Brasileira de Computacio

creation messages such as [dur: durationValue pitch: pitchValue amp: amplVaule]. The second example is the terse
£ event list declaration using the behavior of (duration => event) associations such that [(aMagnitude) => (anlmme-
'ictioﬂ“"y)] returns the association [(duration with value aMagnitude) => (Event with given property dictionary)). One
dicﬁonary-style shorthand with event associations to create event lists, as in the very terse way of creating an anony-
on_persishent) list with two events in the second example. The third example shows the first few notes from the c-minor
om The Well-Tempered Clavichord in which the first note begins after a rest (that could also be represented explicitly
entwith a duration and no other properties). Note that there is one extra level of parentheses for readability.
. Fxamples .
1ists the verbose way”
gentList newNamed: #testl) add: (0 => (Event dur: 1/4 pitch: ‘e3’ ampl: ‘mf’);
add: (1 => ((Event new) dur: 6.0 ampl: 0.3772 sound: #s73bw))]
“Lists——concatenation of events or (dur => event) associations.”
40 Hz, (1/1 beat), 44.7 dB), (1 => ((1.396 sec, 0.714 ampl) sound: #s73bw; phoneme: #xu))]
or fugue theme.”
art time duration pitch voice”
{0.5 beat => ((1/4 beat), (’c3’ pitch), (voice: “harpsichord-))),
((1/4 beat), (’b2° pitch)}), ({1/2 beat), (’c3’ pitch)),
{(1/2 beat), (’g2’ pitch)), ({(1/2 beat), (‘a—-flat2’ pitch)))

8: EVENT GENERATORS AND MODIFIERS
theneratar and EventModifier packages provide for music description and performance using generic or composition-
middle-level objects. Event generators are used to represent the common structures of the musical vocabulary such as
ostinati, or compositional algorithms. Each event generator subclass knows how it is described—e.g., a chord with a
inversion, or an ostinato with an event list and repeat rate—and can perform itself once or repeatedly, acting like a
. a control structure, or a process, as appropriate. EventModifier objects hold onto a function and a property name; they
old to apply their functions to any property of an event list lazily or eagerly. Event generators and modifiers are de-
elsewhere.

permedia networks of events. Event properties can also be active blocks or procedures (in cases where the system suppg,
pilation at run-time as in Smalltalk-80 or Lisp), blurring the differentiation between events and “active agents.” g
created either by messages sent to the class Event (which may be a macro or binding to another class), or more terse}

W

by the concatenation of music magnitudes using the message “,” (comma for concatenation), as shown in the examp]
Applications should enable users to interactively edit the property lists of objects, and to browse event networks vig the
or their links using flexible link description and filtering editors. Standard properties such as pitch, duration, positioy
tude, and voice are manipulated according to “standard” semantics by many applications.

i NumericalMagnitude—numerical value
Chroma—pitch or color Inerveliagnitude
MIDIPitch—e.g., 73 pitch
MID1{Valocity—e.g., 54 velocity (or ampl)
atioMagnitude ('relative’)—relative to another magnitude
RatioDuration—1/4 beat
RatioLoudness—0.7071
DBLoudness—-12 d8
RatioPitch—11/9 of: aPitch
NominalMagnitude—name and table
SymbolicLoudness—'mp* ampt (or loudness)
SymbolicPitch—'c#3’ pitch
ConditionalDuratio bination of other durati
BlockDuration—{ x | x > 42] :
BooleanDuration—{ x | {durt: x) and: {dur2: x}}

OrdinalMagnitude (table'}—order-only

PFisld (‘name’ ‘fleld’}—arbitrary field
HertzPitch—261.623 Hz
MSecondDuration—1215 msec
SecondDuration—1.25 sec

ModeMember—maoda or cyclical pitch class
Pitch—scalar pitch
Chronos—abstract ime model
Duration—duration model
Meter—beat or metronome

Ergon—abstract loudness/amplitude mode
Amplitude—dynamic

Positus—abstract position/space
Directionality—direction and radiation pattern

)

Positior—1- or more-d location

Spatialization—environment
Figure 1: SmOKe Music Magnitude Model Abstractions and Implementation Classes
Event Examples

“Event creation examples—-the verbose way (class messages).”
[event := (Event newNamed: #flash) color: ¥white; place: #there]
[(Event duration: (Duration value: 1/2) pitch: (Pitch value: #c2)
loudness: (Loudness value: #mf)) playOn: aVoice]
“Create three events with mixed properties—-the terse way”
[(440 Hz), (1/4 beat), (-12 dB), Voice default] “abstract props.” ;
[38 key, 280 ticks, 56 vel, (#voice -> 4)] “MIDI-style props.”.
[(#c4 piteh, 0.21 sec, 0.37 ampl, (Voice named: #oboe)] “note-list style”
“Create a named link between two events.”
[eventl isLouderThan: event2]

9; FUNCTIONS, PROBABILITY DISTRIBUTIONS AND SOUNDS

also defines functions of one or more variables, several types of discrete or continuous probability distributions, and
 and sampled sounds. The description of these facilities is, however, outside the scope of this paper, and the reader is
(Smallmusic 1992).

‘ 10: YOICES AND STRUCTURE ACCESSORS

rotmance” of events takes place via Voice objects. Event properties are assumed to be independent of the parameters
thesis instrument or algorithm. A voice object is a “property-to-parameter mapper” that knows about one or more
input formats for SmOKe data (e.g., MIDI, note list files, or DSP commands). A StructureAccessor is an object that
anslator or profocol convertor. An example might be an accessor that responds to the typical messages of a tree node
ber of a hierarchy (e.g., What's your name? Do you have any children/sub-nodes? Who are they? Add this child to the-
t knows how to apply that language to navigate through a hierarchical event list (by querying the event list’s hierar-
Ke supports the description of voices and structure accessors in scores so that performance information or alternative
can be embedded. The goal is to be able to annotate a score with possibly complex real-time control objects that ma-
structure or interpretation. Voices and event interpretation are described in (Pope 1992).

, 12: SmOKe SCORE EXAMPLE

scores, sections with declarations of variables, naming of event lists, event definition, functions and event modifiers,
tion, can be freely mixed. Note that one tries to avoid actually typing SmOKe at all anyway, leaving that to interactive
editors, algorithmic generation or manipulation programs, or read/write interfaces to other media, such as MIDI. The
low shows the components of a SmOKe score for a composition with several sections declared in different styles.
Name declarations are placed between vertical bars.

L EVENT LISTS
Events are grouped into collections—event lists—where a list is composed of associations between start times (dura
ing at the start time of the event list) and events or sub-lists (nested to any depth). Schematically, this looks like: (E
(durl => eventl), (dur2 => even2), ...) where (x => y) means association with key x and value y. Event lists can
their own properties, and can map these onto their events eagerly (at definition time) or lazily (at “performance”
have all the property and link behavior, and special behaviors for mapping with voices and event modifiers. Event
named, and when they are, they become persistent (until explicitly erased within a document or session).

The messages [anEventList add: anAssociation) and [anEventList add: anEventOrEventList at: aDuratiori;
the corresponding event removal messages, can be used for manipulating event lists in the static representation or
tions. If the key of the argument to the add: message is a number (rather than a duration), it is assumed to be the
duration in seconds or milliseconds, as “appropriate.” Event lists also respond to Smalltalk-80 collection-style contrc
messages such as [anEventList collect: aSelectionBlock] or [anEventList select: aSelectionBlock], though th
the representation of contexts/closures. The behaviors for applying functions (see below) to the components of evel
look applicative (e.g., [anEventList apply: aFunction to: aPropertyNamel), or one can use event modifier objec
a stateful representation of the mapping. Applications will use event list hierarchies for browsing and annotation as
score following and performance control. The use of standard link types for such applications as version control (Wil
types as #usedToBe or #viaScript]1b5i4), is defined by applications and voices.

A named event list is created (and stored) in the first example below, and two event associations are added to it, 0“@
0 (seconds by default), and the second at 1 sec. Note that the two events can have different types of properties, and

ons of variable names and top-level event list.”

€ sectionl section2 | “name declarations--optional but advised.”
i= EventList newNamed: #piece.

~-verbose, add events using add:at: message.”

nl := EventList newNamed: #sectionl.

nl add: (...first event (may have many properties)...) at: O.

Ql add: (...second event...) at: 0. “starts with a chord.”
“...section 1 events, in parallel or sequentially...”

166 XIV Congresso da Sociedade Brasileira de Computacio

add event assoc. using ‘.’ concatenation operator.”

)y => (...eventl...)), ((1/4 beat) => {event2)},

“gection 2-—terse,

section2 := ((0 beat
v, . .section 2 events...”,

((2109/4 beats) => (event3308)) .

“Event list composition (may be placed anywhexre)”
piece add: sectionl; add: section2. “add the sections in sequence.”
piece add: (Event duration: (4/1 beat)) . “add one measure of rest after section 3,
wAdd a section from data arrays.”
piece add: (EventListwithProperties: # (duration: loudness: pitch:)
values: {(Array with:# (250 270 230 120 260 260 ...)} “duration”
values: {(Array with:# (‘mp’) “loudness”
values: {(Array with:# (‘e3’ 'd" ‘e’ gloe.. D) “pitch”
“add an event with the given samples (you want low-level? we got low-levelt)”
plece add: (Event rate: 44100 channels: 1 samples: $(0 121 184 327 441 ...)).
wpeclare global (named) event modifiers, functions, etec.” :
{Rubato newNamed: #tempo) function: (...tempo spline function...} property: #startTy
piece tempo: (Rubato named: #tempo) .
“Optionally declare voices, accessors, other modifiexs, etc.”

13: CONCLUSIONS
The Smallmusic Object Kernel (SmOKe)isa representation, description language and interchange format for musical
eases the creation of concrete description interfaces, the definition of storage and interchange formats, and is suitabl
multimedia, bypermedia applications. The SmOKE description format has several versions, ranging from very readab|
terse, and covering a wide range of signal, event, and structure types from sampled sounds to compositional algorithmg
can be viewed as a procedural ora declarative description; it has been designed and implemented using an object-orien
odology and is being tested in several applications. More explicit documents describing SmOKe, and the Smalltalk-g

mentation of the system in the MODE system, aré freely available via Internet file transfer.

SmOKe, and the MODE of which it is a part, is the work of many people. Craig Latta and Daniel Oppenheim came y
names Smallmusic and SmOKe. These two, and Guy Garnett and Jeff Gomsi, were part of the team that discussed

of SmOKe, and commented on its design documents (Smallmusic 1992).

ANSI 1992 Journal of Technical Development, ANSI Working Group X3V1.8MSD-7 (now ISOIEC DIS ld

R. B. Dannenberg, L. Dyer, G. E. Garnett, S. T. Pope, and C. Roads, “Position Papers for a Panel onMu
Representation,” Proc. of the ICMC, San Francisco: ICMA, 1989. ~

A. Goldberg and D. Robson, Smalltalk-80: The Language, (revised and updated from 1983 edition). Menl
Addison-Wesley, 1989.

MusRep 1986, R. Dannenberg, J. Maloney, etal.,
USENET

MusRep 1990, G. Diener, L. Dyer, G. E. Garnett, D. Oppenheim, 5. T. Pope et al,,
representation at CCRMA”, Fall, 1990.

Newcomb, N. A. Kipp, and V. T. Newcomb. “The HyTime Hypermedia/ Time-based Document 5t
Language,” Communications of the ACM, vol. 34, no. 11, pp. 67-83

S.T. Pope, “Interim DynaPiano: An Integrated Computer Tool and Instrument for Co
Journal 16:3. Fall, 1992.

Smallmusic 1991. G. E. Garnett, J. Gomsi, C. Latta, D. Oppenheim, S.T.Popeetal., Smallmusic disctt

notes, Credo 1-6 documents (from which this document was derived), and MODE User Primitive sp!

available from Smallmusic@XCF.Berkeley.edu as email or via anonymous InterNet ftp from the setvel

ftp.Stanford.edu in the directory pub/st80 (see the README file there).

Network electronic discussion on music represent

“Notes of meeting

mposers," Con

Analise

Musical, Educacao

| Simpésio Brasileiro de Computacio e Misica 169

Learning Counterpoint Rules for Analysis and Generation

EDUARDO MORALES M.
ITESM - Campus Morelos, Apto. Postal C-99,
Cuernavaca, Morelos, 62050, Mézico
email: emorales@rs970.mor.itesm.mx

ROBERTO MORALES-MANZANARES
Laboratorio de Informdtica Musical (LIM)
Escuela de Misica de la Universidad de Guanajuato
Universidad de Guanajuato
Centro de Investigaciones en Matemdticas (CIMAT)
Paseo de la Presa # 152
Guanajuato, Gto., Mézico
email: roberto@kaliman.cimat.conacyt.mx

Abstract

History in composition and analysis have shown that composers using the same
patterns in structure and harmony get different results depending on the way
these patterns are resolved. In terms of musical analysis, a particular piece can
be described by a sequence of states and transitions between states represent-
ing the personal criteria that each composer pursues when solving a musical
structure. A first-order learning system, called Pal, is used to learn transition
criteria for counterpoint analysis, in the form of Horn clauses from pairs of mu-
sical states (given as sets of notes) and general purpose musical knowledge. It
is shown how the rules learned by Pal can be used for musical analysis of simple
two—voice counterpoint pieces. Similarly, a counterpoint voice can be generated
from a single voice {cantus firmus) using the learned rules. Conclusions and
future research directions are given.

1 Introduction

Musical composition generates symbolic representations (i.e., musical scores) of musical ideas. Such
ideas are based on subjective temporal interpretations of auditive events. The events are characterized
by their frequency, amplitude and its envelope (which determines the quality of tone or pitch). Such
elements, which define the musical characteristics of the musical instruments, are part of the material
which a composer uses to propose its aesthetic solutions. During this process, a composer can follow
a set of implicit or explicit rules to guide his/her preferences and express his/her ideas. Our goal is to
induce musical criteria rules that can be used for musical analysis and generation. As a first step, we
looked at counterpoint analysis, which is well understood and defined with a finite set of known rules
(Fux, 1971). Counterpoint rules can be expressed in a compact and understandable way using first-order
logic. In general, musical rules express relations between notes. In order to learn such rules we used
Pal (Morales, 1991; Morales, 1992a) an Inductive Logic Programming (ILP) system (Muggleton, 1991)
capable of learning a subset of Horn clauses from examples and background knowledge expressed as logie
programs. It is shown how Pal can learn counterpoint rules of the first specie (to be defined below) and
used them for musical analysis and generation of counterpoint notes from cantus firmus (a sequence of
single notes to which counterpoint rules are applied to generate harmonic notes). The constraints used

170 XIV Congresso da Sociedade Brasileira de Computacge

by Pal to guide its inductive search for hypothesis are discused, in the context of music and in general to

other areas where Pal has been used.
Section 2 describes some musical concepts required for counterpoint analysis. Section 3 provides some

definitions from logic. The concepts and notation will be used in the sections to follow. Section 4 briefly
describes an ILP inductive framework and Pal. Section 5 shows the main results and finally conclusions
and future work are given in section 6.

2 Musical background

The concept of musical counterpoint emerge in the 14th. century and evolve up to Gradus ad Parnassum
by Johann Joseph Fux published in 1725 (Fux, 1971). This is the first book which synthesize in form of
rules the art of polyphony considered to be correct by that time. Those rules can be considered as the
culmination of musical analysis from the 14th. until 18th. century.

Counterpoint rules can be classified between two voices (sequences of notes) into several species,
according to the number of notes involved at the same time on each voice:

e 1st: one note on one voice against one note on the other

o 2nd: two notes on one voice against one note on the other

o 3rd: four notes on one voice against one note on the other

o 4th: a whole note (of four times) on one voice against half notes (of two times) on the other
o 5th or florid: three or more notes in combination with the previous species

Our goal is to obtain similar rules as those described by Fux from examples of musical pieces and
basic musical knowledge from traditional music. Such knowledge includes the classification of intervals
(distances in height between two notes) into: consonances and dissonances. Unison, fifth and octave are
perfect consonances while third (mayor and minor) and sizth (mayor and minor) are imperfect consonance.
Second (mayor and minor), fourth, augmented fourth, diminished fifth and seventh (mayor and minor) are
dissonances.

These are the elements which account for all harmony in music. The purpose of harmony is to give
pleasure by variety of sounds through progressions from one interval to another. Progression is achieved
by motion, denoting the distance covered in passing from one interval to another in either direction, up
or down. This can occur in three ways: direct, contrary and oblique:

o direct motion: results when two or more parts ascend or descend in the same direction
o contrary motion: results when one part ascends and the other descends, or vice versa.
o obligue motion: results when one part moves while the other remains stationary

With these concepts the counterpoint rules of 1st. specie are defined as follows:

First rule: from one perfect consonance to perfect consonance one must proceed in contrary or oblique
motion

Second rule: from a perfect consonance to an imperfect consonance one may proceed in any of the three
motions

Third rule: from an imperfect consonance to a perfect consonance one must proceed in contrary or
obligue motion

Fourth rule: from one imperfect consonance to another imperfect consonance one may proceed in any
of the three motions

In section 4 it is shown how these rules are learned from a small set of examples, represented as pairs
of notes in two voices, and general musical knowledge about musical intervals. First we give a short
description of Pal.

| Simpésio Brasileiro de Computacdo e Mdsica 171

3 Preliminaries

A vartable is represented by a string of letters and digits starting with an upper case letter. A function
symbol is a lower case letter followed by a string of letters and digits. A predicate symbol is a lower
case letter followed by a string of letters and digits. A term is a constant, variable or the application of
a function symbol to the appropriate number of terms. An atom or atomic formula is the application
of a predicate symbol to the appropriate number of terms. A literalis an atom or the negation of an
atom. Two literals are compatible if they have the same symbol, name and number of arguments. The
negation symbol is . A clause is a disjunction of a finite set of literals, which can be represented as
{A1, 42, Ap,=Bi1,...,mBn}. The following notation is equivalent:

A1, Az, .. Ay = B1, By, ..., Bn.

A Horn clause is a clause with at most one positive literal (e.g., H « By, ..., Bm). The positive literal
(H) is called the head, the negative literals (all B;s) the body. A clause with empty body is a unit clause.
A set of Horn clauses is a logic program. Fy syntactically entails Fy (or Fy b Fy) iff Fy can be derived
from F) using the deductive inference rules. A substitution ©@ = {Vi/t1,Va/ta, ..., Va/ta} consists of a
finite sequence of distinct variables paired with terms. An instance of a clause C with substitution ©,
represented by C'@, is obtained by simultaneously replacing each occurrence of a component variable of
© in C by its corresponding term. A model of a logic program is an interpretation for which the clauses
express true statements. We say that Fy semantically entails Fy (or Fy |= Fa, also Fy logically implies
or entails Fy, or Fy is a logical consequence of Fy), iff every model of Fy is a model of F.

4 Pal

Inductive Logic Programming (ILP) is a fast growing research area which combines Logic Programming
and Machine Learning (Muggleton, 1991). The general setting for ILP is, given a background knowledge
K (in the form of first-order clauses) and sets of positive (£7) and negative (£7) examples, find a
hypothesis M (another set of clauses) for which K AH F £+ and K AH tf £. That is, find a hypothesis
which can explain the data in the sense that all the positive (£*) but none of the negative (£7) examples
can be deduced from the hypothesis and the background knowledge. This inductive process can be seen
as a search for logic programs over the hypothesis space and several constraints have been imposed to
limit this space and guide the search. For learning to take place efficiently, it is often crucial to structure
the hypothesis space. This can be done with a model of generalization. Searching for hypothesis can
then be seen as searching for more general clauses given a known specialized clause.

Plotkin (Plotkin, 1969; Plotkin 1971a; Plotkin, 1971b) was the first to study in a rigorous manner
the notion of generalization based on @-subsumption. Clause C'O-subsumes clause D iff there exists a
substitution ¢ such that Co C D. Clause C; is more general than clause Cy if C; ©-subsumes Cs.
Plotkin investigated the existence and properties of least general generalizations or lgg between clauses
and the lgg of clauses relative to some background knowledge or rlgg. That is, generalizations which are
less general, in terms of ©-subsumption, than any other generalization.

More recently, Buntine (Buntine, 1988) defined a model-theoretic characterization of ©-subsumption,
called generalized subsumption for Horn clauses (see (Buntine, 1988) for more details). Buntine also
suggested a method for constructing riggs using Plotkin’s lgg algorithm between clauses. The general
idea of the rlgg algorithm is to augment the body of the example clauses with facts derived from the
background knowledge definitions and the current body of the example clauses, and then generalized
these “saturated” clauses using the lgg algorithm. Pal’s learning algorithm is based on this framework
which is more formally described in Table 1.

A direct implementation of it is impractical for all but the simplest cases, as it essentially involves the
deduction of all ground atoms logically implied by the theory (see (Niblett, 1988) for a more thorough
discussion on generalization). However, rigg exists for theories without variables (as in Golem (Muggleton
& Feng, 1990)), theories without function symbols (as in Clint (deRaedt & Bruynooghe, 1988)), and when
only a finite number of facts are deducible from the theory, either by limiting the depth of the resolution
steps taken to derive facts and/or by constraining the theory, as in Pal. Even with a finite set of facts, the
lgg of two clauses can generate a very large number of literals and some additional constraints are required

172 XIV Congresso da Sociedade. Brasileira de Computaciio

Table 1: A plausible rlgg algorithm for a set of example clauses

o given:
— alogic program (K)
— a set of example clauses (SC)
o Take an example clause (Cy) from SC. Let 61,1 bea substitution grounding the

variables in the head of C) to new constants and 8y » grounding the remaining
variables to new constants

o Construct a new clause (NC) defined as:
NC=Cih U {ﬂAlJ, —\A1y2, .. } wbere
K A Crsoaybi,101,2 = A1, and A ; is a ground atom

o Set SC = SC ’"{Cl}
¢ while SC # {0}

— Take a new example clause (C;) from SC. Let 6;,1 be a substitution groux}d—
ing the variables in the head of Cj to new constants, and ;2 grounding
the remaining variables to new constants

— Construct a new clause (C}) defined as:

CJ' = C'jcgjyl U {ﬁA]',l, -Aj9, - } wbere

K A Cisoayi,10i,2 = Aj i and Ajp is a ground atom
~ Set NC' = lgg(C},NC)
— Set SC = SC—{C;}

e output NC

to achieve practical results. PAL (i) uses a pattern—based béw..ckgxtound~ knowledge representation to dirlYe
a finite set of facts and (i) applies a novel constraint which 1dent1ﬁe%s the role of the comp(;nsnls in
different example descriptions to reduce the complexity of the lgg al_goxflthm (these. are explaine p € o:&;l),

Examples in Pal are given as sets of ground atoms (e.g., descriptions of musu‘:al scores stating g
notes involved on each voice). In general, a musical score can be completely described by the t.one ail
height of each note involved, its time interval and the voice yvhgre it l?elongAsA For countgrpou(lit rtu es
of the first specie, time intervales can be ignored (we are beginning .to investigate how to include m;e
intervals in the descriptions of scores) and the examples were described by two—lplace atoms (note{ 2
stating the tone and height of each note and its voice. For instance, note(c/4, voicel) states that a
note in the center of the piano scale (4) belongs to voice one. Other notes of the same or different v01ces'
can be described in the same way. Other examples descriptions have been used in chfess '(Morales, 199hl,
Morales, 1992a) and qualitative modelling (Morales, 1992b). ‘Each example description is added to the
background knowledge from which a finite set of facts are d.erlved. .

In the musical context Pal induces pattern definitions with the following format:

Head « D1,Dz,...,Di, F1, Fa, ...

where,
o Head is the head of the musical rule (pattern definition). Instantiations of the head are regarded as

musical patterns recognized by the system.

e The D;s are “input” predicates used to describe scores (e.g., note/2) and represent the components
which are involved in the pattern.

| Simpésio Brasileiro de Computacdo e Milsica 173

e The Fis are instances of definitions which are either provided as background knowledge or learned
by Pal, and represent the conditions (e.g., relations between notes and voices) to be satisfied by the
pattern.

Pal starts with some pattern definitions as background knowledge and use them to learn new patterns.
For instance, the definition of inter_class2/3 was given to Pal as follows:

inter_class2(Notel ,Note2, Type) «
note(Notel, Voicel),
note(Note2, Voice2),
interval(Inter,Notel,Note2),
int_class(Valid,Inter, Type).

where interval/3 is a background knowledge definition that returns the musical interval between two
notes, while int_class/3 returns if an interval is valid/invalid with its type for valid intervales (i.e., perfect
conssonance, imperfect conssonance, or dissonance). This definition gets instantiated only with example
descriptions with two notes of different voices and returns if they form a perfect/imperfect consonance
or a dissonance.

Given an example description, Pal “collects” instantiations of its pattern-based background knowledge
definitions to construct an initial hypothesis clause. The head of the clause is initially constructed with
the arguments used to describe the first example description. The initial head, in conjunction with the
facts derived from the pattern definitions and the example description, constitutes an initial concept
clause. This clause is generalized by taking the lgg of it and clauses constructed from other example
descriptions.

Even with a finite theory for music, the large number of plausible facts derivable from it, makes the
finiteness irrelevant in practice (e.g., consider all the possible intervals between notes in music). In Pal
a fact F is relevant to example description D if at least one of the ground atoms of D occurs in the
derivation of F". Since PAL constructs its clauses using pattern-based definitions, only a finite set of
relevant facts are considered.

The size of the generalized clauses is limited by requiring all the variable arguments to appear at least
twice in the clause. In addition, PAL uses a novel constraint based on labelling the different components
which are used to describe examples to guide and constrained the lgg algorithm. For instance, notes in
the following example are assigned unique labels as follows:

note(c/4,voicel) ~— note(cq/4g,voicel)
note(c/B,voice2) — note(cy /5s,voice2)

The labels are kept during the derivation process, so the system can distinguish which component(s)
is(are) “responsible” for which facts derived from the background knowledge, by following the labels. For
example, instances of inter.class2/3 will use the same labels:

inter_class2(c/4,¢/5,perf.cons) — inter_class2(cq /4g,cy/55,perf_cons)

The lgg between compatible literals is guided by the associated labels to produce a smaller number of
literals, as Iggs are produced only between compatible literals with common labels (a simple matching
procedure is used for this purpose). In music this constraint identifies corresponding notes (i.e., notes
which are involved in the same relation in different examples). The labels used in one example for the

- first note are associated with the first note of another example. Thus Pal requires that the corresponding
..components are presented in the same order.

5 Experiments and results

The following musical knowledge was provided to Pal:

o inter_classi(Notel,Note2, Valid): describes if two notes from the same voice have a valid/invalid
interval. Where valid intervals can be consonances or dissonances which follow the same modality
of the cantus firmus (i.e., a Tth. or augmented 4th. would be invalid)

174 XIV Congresso da Sociedade Brasileira de Computacg,

o inter.class2(Notel, Note2, Conso): describes if two notes of different voices form a perfect or imper-
fect consonance or a dissonance

Pal was given manually the examples for each rule. It should be noted that the second author
suggested all the examples and musical knowledge without knowing the exact functioning of the system.
The number of examples required to learn each rule is given below:

Rules Rulel | Rule2 | Ruled | Ruled
Number of 6 4 5 5
examples

The first rule induced by Pal is shown below (the other three rules are very similar changing only in
the different combinations of perf.cons and imperf_cons).

rule(Notel, Note2, voicel, Noted, Note4, voice2) «

note(Notel, voicel),

note(Note2, voicel),

note(Note3, voice2),

note(Noted, voice2),

inter_class1(Notel, Note2, valid),
inter_class1(Note3, Noted, valid),
inter_class2(Notel, Interl, perf_cons),
inter.class2(Note2, Inter2, perf_cons).

The tules learned by Pal were tested for analysis on simple counterpoint pieces. We add an extra
argument to each rule to distinguished them from the rest. The analysis was made with the following
program:

analysis([Notel,Note2|RVoicel], [Note3,Noted|RVoice2],
[NumRule|Rules]) —
rule(Notel, Note2, Note3, Note4, NumRule),
analysis([Note2|RVoicel],[Note4|RVoice2],Rules).

analysis([- J,[-L,[])-

For instance, for the piece below, we obtained the following analysis:
f

Y o Iy o

o (1] (3] o oY
% A] (1] Y (4] O LU
o 43 o
XY o o [\) 43 o
(3] 0 ~ O

?7- analysis([d4,f4,e4,d4,g4,14,a4,84,/4,e4,d4],
[a4,a4,g4,a4,b4,c5,c5,b4,d5,cs5,d5],
Rules).

Rules = [r1,r4,r3,r2,r3,r2,r4,r4d,r4,r2].

The same program can be used for musical generation. For example, given the cantus firmus below, we
can generate the required counterpoint notes:

?. analysis(Notes,[d4,f4,e4,d4,g4,24,g4,f4 €4,d4] [r1,r3,13,...]).

Notes = [d3,d3,a3,13,e3,d3,£3,c4,d4,cs4,d4].

impdsio Brasileiro de Computacdo e Miisica 175

;
% 1 o

@

-
=
-]

=
®
3

5

Conclusions and future work

(Widmer, 1992), Widmer describes a system capable of learning counterpoint rules using an Explanation—
ased learning approach (de Jong, & Mooney, 1986). Unlike Pal, a generalization of the target coun-
rpoint rules is required as background knowledge, from which the more specific counterpoint rules are
erived. By contrast, Pal uses a much simpler background knowledge to induce equivalent rules:

In this paper, it is shown how Pal, an ILP system, can effectively learn simple counterpoint rules
om general purpose musical knowledge and simple example descriptions. The learned rules can be used

+ musical analysis and generation. This is an initial step towards learning more complicated musical
les expressing personal criteria follow by composers. If we succeed in our goal, the learned rules would
rovide explicit knowledge of preference criteria follow by composers. This knowledge could be used for
nalysis and provide suggestions for musical compositions.

eferences

. Buntine (1988). Generalised subsumption an its applications to induction and redundancy. Artifi-

cial Intelligence, 36(2):149-176.

e Raedt, L. & Bruynooghe M. (1988). On Interactive Concept-Learning and Assimilation. In D. Slee—

man & J. Richmond (Eds.), Proc. of the third european working session on learning, EWSL~88, pp.

167-176, London, Pittman.

x, J.J. (1971). Gradus ad Parnassum, 1725. Translated and edited by Alfred Mann, W.W. Norton &

Company.

orla,les, E. (1991). Learning Features by Experimentation in Chess. In Y. Kodratoff (Eds.) Procee-

dings of the European Working Session on Learning, (EWSL~91), pp. 494-511, Berlin, Springer—

Verlag.

orales E. (1992a). Learning Chess Patterns. In S. Muggleton (Eds.), Inductive Logic Programming,

pp- 517-537, London, Academic Press, The Apic Series.

orales, E. (1992b). Tirst-Order Induction of Patterns in Chess, Ph.D. Thesis, The Turing Institue —

University of Strathclyde, Glasgow.

uggleton 8. & Feng, C. (1990). Efficient induction of logic programs. In S. Arikaxa, S. Soto, S. Oh—

suya, & T. Yokomari (Eds.), Proceedings of First International Workshop on Algorithmic Learning

: heory, (ALT90), pp. 368381, Tokyo, Japan, Ohmsha.

uggleton, S. (1991). Inductive Logic Programming, New Generation Computing 8: 295-318.

blett, T (1988).. A study of generalisation in logic programs. In D. Sleeman & J. Richmond (Eds.),

ff‘oc. of the Third European Working Session on Learning (EWSL-88), pp. 131-138, Glasgow, Pitt~

Iman,

Otkin,‘G,D. (1969) A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine

fﬂiffllzgence 5, pp. 153-163, Edinburgh, Edinburgh University Press.

;t{kln,lG,D, (19713,). A furhter note on inductive generalisation. In B. Meltzer & D. Michie (Eds.),
‘(l.Chme Intelligence 6, pages 101-124, Edinburgh, Edinburgh University Press.

thm, G.D. (1971Db). Automatic Methods of Inductive Inference. Ph.D. Thests, Edinburgh, Edin~

birgh University.

‘,d’gefy.Gv. (1992). The importance of basic musical knowledge for effective learning, In M. Balaban,
bCl.(ngu & O. Laske (Eds.), Understandig Musica with AI: Perspectives on Music Cognition,

‘mbndge - Menlo Park: AAAI Press/MIT Press.

| Simpésio Brasileiro de Computacio e Miisica 177

A System for Aiding Discovery in Musical Analysis

EDILSON FERNEDA *, CARLOS ALAN PERES DA SILVA **,
LUCIENIO DE MACEDO TEIXEIRA **, HELIO DE MENEZES SILVA *

Universidade Federal da Paraiba
* Departamento de Sistemas e Computagdo | ** Departamento de Artes
Av, Aprigio Veloso, s/n — 58.109-970 Campina Grande - PB - Brazil
e_mail: edilson@dsc.ufpb.br / peres@brufpb2.bitnet

Abstract

We start by proposing a computer aided scientific discovery system. This system
may be seen as a knowledge acquisition environment, We present a knowledge
representation (the Semi-Empirical Theories) usable to formulate, to experiment,
and to divulge that knowledge, and a protocol (MOSCA) for cooperation between
rational agents. The protocol is geared to the acquisition and evolution of
knowledge. The objective of this system, rather than producing an exact knowledge,
is yielding a knowledge which may present a high level argumentation on its
validity and may also be improved via a dialog protocol. As an application, we aim
at making the machine to behave rationally when performing Musical Analysis,
which involves the four technical fields of Music: composition, execution, theory,
and sound digital processing.

1. Introduction

In this paper we propose the specification of a Rational-Agent machine and its application to the field of
Musical Analysis. A Rational Agent is an autonomous intelligent system that appears to the user as having
reasoning abilities, because it is capable of common sense reasoning (such as those that we exert in our daily
lives) and of handling intentions, belicfs, and knowledge that is tolerated to be, to some extent, evolutionary,
incomplete, imprecise, and erroneous. This project is characterized mainly by making use of expertise in varied
domains of the Cognitive Sciences: Artificial Intelligence, Informatics, Music, Psychology, Didactics, etc.

From an Artificial Intelligence vantage point, this work may be seen as lying in the confluence of the

streams of Knowledge Acquisition and Machine Learning. According to the definition proposed in (Aussenac-

Gilles, Krivine & Sallantin, 1992):
The domain of Knowledge Acquisition for Knowledge Based Systems (KBS's) is characterized by the
identification and management of the processes necessary to the elaboration (conception, evaluation,
and evolution) of a KBS from heterogeneous sources of knowledge (documented, human, and
experimental). The result expected from our approach is fo furnish the Sfuture system with the
knowledge that will be the foundation of its expertise. The conductor of the process of knowledge
acquisition is the knowledge engineer: he orchesirates the intervention of different processes, actors,
and agents.

While Knowledge Acquisition uses the machine as a mere tool for helping the knowledge engineer to
elicit the expert's knowledge, Machine Learning studies the set of mechanisms that gives the machine the
faculty of building the knowledge base by analyzing data, explanations, criticisms to solutions, ctc. Several

178 XIV Congresso da Sociedade Brasileira de Computacdo

works (e.g. Barboux, 1990) have shown the necessity of making Machine Learning and Knowledge Acquisition
to synergetically work together for modeling the control component of the learning process.

Learning proficiently is not enough if the expert is left without proper ammunition to efficiently check and
validate the information acquired by the machine. This information has a too large volume and the expert has
110 tool capable of helping him to efficiently criticize the choices done, particularly the choice of the description
language (which implies the choice of the learning tool) and of the sclected sample of examples.

A System for Aided Discovery (SAID) is a synergetic combination of Machine Learning and Knowledge
Acquisition. It follows principles (summarized in Wielinga, Boose, Gaines Screiber & van Someren, 1990),
such as those for data acquisition, for abstraction based on information about a conceptual model, for
particularizat‘ion of this model, etc. The study of expert systems has shown a pervasive dichotomy between deep
knowledge (characterized by having theoretical justification and by being found in scientific books, articles,
etc.) and shallow knowledge (which is characterized by being situational, empirical, and not found in
conventional scientific writings, though massively used by truc experts, being the very cause of their expertise).
As it was well put in (Sallantin & Haiech, 1993), a SAID discovers this shallow knowledge by taking advantage
of both some deep (theoretical) knowledge made available and a set of incomplete, partially erroncous data. The
knowledge base is assumed to be revisable (by error correction) and evolutionary (by making the knowledge
more precise, more broad, more deep, more structured, more understandable,... or, in short, by improving the
knowledge, in any sense).

In this paper we see scientific discovery as being the result of examining and revising a modeling process
over which both theoretic models and experimental data intervene. During the modeling process, discovery is
seen as that which was not yet learned by the on going modeling.

A first effort for conceptualizing an artificial apprentice generated a conceptual framework: the Semi-
Empirical Theories (SET), introduced in (Sallantin, Szczeciniarz, Barboux, Lagrange & Renaud, 1991;
Sallantin, Quinqueton, Barboux & Aubert, 1991). That effort established the clementary concepts which allow
building (modeling) an apprentice's knowledge and studying its evolution. SET, however, being focused on the
structures and mechanisms of an apprentice, neglected a fundamental learning aspect: the environment for the
interaction between the apprentice and the external world. Therefore, a learning environment was proposed, as
well as a description of a learning protocol. (Ferneda, 1992) shows how this protocol can be merged with the
SET framework.

Since concepts formulated by an apprentice can be erroncous, an intervening agent should be able to
determine counter-examples (and also examples likely to be in the frontier or beyond .the frontier of the
apprentice's current knowledge), testing and exercising him to the limits of his capabilitics, hopefully
embarrassing him by exposing his deficiencies, therefore stimulating him to revise and improve his knowledge.
The goal is not to have an apprentice capable of acquiring a perfect (exact and complete) knowledge, but rather
to have an apprentice capable of acquiring a knowledge which will be considered as quite plausible (because the
apprentice can yield a high-level argumentation of its plausibility) and may also be corrected/improved via a
dialog protocol.

The objective of a SAID applied to Musical Analysis is the analysis of Music's horizontality (melody,
theme, scale, ...) and verticality (harmonic structure, instrumental coloring). An immediate application would
be a study comparing the works of a same composer, or the works of a set of composers.

2. Rational agents

The scientific community, in spite of having tried really hard, has not yet come 10 2 consensual definition
of intelligence. There are, however, active entities which display behavior conventionally considered as being
intelligent. These entities will hereafter be named agents.

Researches for the conceptualization and conception of artificial systems (or agents) capable of exhibiting
behavior accepted as intelligent must, therefore, take into consideration the several characteristics presumed as
necessary for a conduct to be classified as being intelligent. Among these attributes, we are here particularly

| Simpésio Brasileiro de Computacdo e Miisica 179

%ntcrqstcd in‘the one of rationality (Newell, 1982). The notion of rationality, more specific than the onch of
intelligence, is related to the treatment of a well delincated class of problems.

A Rational Agent is defined as being any (human or artificial) system capable of producing and
controlling its own knowledge in a certain domain, in such way that the system will be able to proficiently
perfgrm some classes of complexes tasks (such as deciding, classifying, diagnosing, predicting, simulating,
restricting, conceiving, and planning) conventionally considered as requiring intelligence for being well
accomplished.

J. P. Miiller (Miiller, 1987) showed the possibility of constructing systems that: (i) are able to interpret
symbolic structures; (i) are conscious of their limitations; (i7i) act in logical accordance with their beliefs; (iv)
'fire able to adapt their actions to the changes in their knowledge. These systems, therefore, are capabie of
improving their representation of the external world and of better interacting with this world. This capability of
constructing and cvolving their representation of the world may be added to the learning aptitude of an
intelligent agent.

Next, we will describe the behavior of an apprentice agent (apprentice, for short) whose knowledge is the
result of communicating with other agents, This agent builds and controls the evolution of its knowledge. It has

reasoning mechanisms such as those of the Semi-Empirical Theories (section 3), and its learning environment
is based on the MOSCA protocol (section 4).

3. Semi-Empirical Theories

Semi-Empirical Theories (SET) are a language-independent knowledge conceptualization introduced by J.
Sallantin. SET defines how the knowledge is formulated, experimented, and divulged.

Figure 1 depicts a taxonomy of the terms used for expressing knowledge in SET. This taxonomy is based
on the work of T. Addis (Addis, 1988), which revised C. S. Pierce's work (Pierce, 1934) on .modeling
knowledge. The taxonomy includes: () data representing the knowledge; (ii) mechanisms for creating the data
(by abduction), organizing them (by induction) and propagating restrictions on them (by deductionsy, (iii)
methods related to the interactions with an external agent that plays the role of criticizing or the role of
proposing a statement to be proved. The methods examine the adequacy of information such as being a lemma,
being an objection, being a proof, being a conjecture, ¢tc.

/ Objections Lemmas
Fact Objects< Examples Excent

. Exceptions
- Hypotheses ((,oumer-cxnmples< Monstérs

Data
1 I Conjectures
curistics) ~— Proves
Abduction
SET — Mcchanisms< Induction

Deduction

Empirical
Analogical
Methods < Proof By default
Refutation By evidenco

Figure 1: Terms intervening in the knowledge formalization and evolution via SET.

4. A Protocol for learning

Formal theories for learning (Boucheron, 1992) define a minimal learning environment which is made of
an apprentice communicating with an oracle, From the point of view of problem solving, the protocol
controlling the dialog between these two actors may be summarized as follows: the oracle sends pairs
<problem, solution> to the apprentice, each pair being named a sample, the problems having been already
solved and their solutions known by the oracle; upon receiving each pair, the apprentice stores the information

180

the currently learned hypothesis (the knowledge base), the
apprentice searches the hypothesis space (the set of all hypothesis which may be formed in the light of all the
information, old and new) looking for a hypothesis that, when measured by a learning criterion, will be
considered better than the previous Rypothesis and all the other candidate ones. Therefore, the presented model

f (i) a hypothesis space, (ij) a lcarning criterion measuring how a

sees a lcarning problem as composed 0
hypothesis fits the set of samples, and (/i) a strategy for traversing the hypothesis space.

Two kinds of noise add to the inherent complexity of searching for a hypothesis: (i) the pair <problem,
solution> may have been erroncously described, and (ii) the language adopted for describing those pairs may be
too coarse, leading to the comsequence that it, not pcrcciving-and-representing the difference between two
problem specifications, may present the apprentice with a unique problem having two distinct solutions. Real
world applications can not completely escape the existence and negative effects of noise.

This minimal learning environment is implemented as follows: While the machine plays just the role of
the apprentice, the expert plays the role of the oracle and may also play some other roles, as we will see. The
expert, by choosing the way of structuring and representing knowledge, determines the type of apprentice
deemed more adequate to the problem at hand. Well, determining the type of the apprentice is determining the
hypothesis space on which the apprentice can operate. This way, the expert is the one who takes all the crucial
decisions: (i) He, by choosing the type of the apprentice (and, therefore, the format of the hypothesis, of the
samples, and of the problems to be solved), decides the underlying theoretical framework for learning in the

application domain; and (ii) The expert selects the examples to be offered to the apprentice. When playing his
role as an oracle, the expert has available a first manner of pressing the apprentice, imposing a knowledge on

received and, if it does not perfectly match

him.
After having received a first set of exam
apprentice leaves his learning mode and enters

ples and counter-examples and built a learned hypothesis, the
his probation mode, ready for solving problems proposed by the
expert. Three difficultics appear: (i) examining merely the solutions produced by the apprentice is not enough
for evaluating the learned hypothesis; (i) we are trying to achieve scientific discovery, therefore the expert does
not exactly know how to characterize whether or not a hypothesis is a good one, deserving to be maintained;
and (iii) hypotheses is usually too large, too unstructured and too complex to be directly utilized by the expert.
For these reasons, we provided the apprentice with a high-level argumentation mechanism whose importance
has acknowledged by some researchers (Fisher, Lemke, Mastaglio & Morch, 1991). The expert will judge the
goodness of a hypothesis by judging the argumentations presented by the apprentice as an justification of the
solutions he found for the posed problems. When playing his role as an examiner, the ‘expert has available a
second manner of pressing the apprentice, making him to revise the learned hypothesis.

This informal presentation of the MOSCA! (Reitz, 1992) depicts five distinct roles: (i) the apprentice,
yielding a learned hypothesis which fits well the sample of examples and counter-examples previously made
available to him; (§i) the oracle, yielding unrefutable <problem,solution> pairs; (iii) the Client, which submits
problems to the apprentice and expects 10 receive solutions from him; (V) the probe, yiclding refutable
<problem,solution> pairs, making him to present the due argumentations; and (v) the master, who analyses the
apprentice's argumentations and then offers useful criticisms to him. The learning environment is summarized

in Figure 2. Additional explanations follow:

—gpe- Oracle

Master

request
argmentation
criticize’

request Apprentic

ion> bl .
<problern,soluction: problem Client

problem solving vantage point.

request
Zproblem,soluction™

Probe
Figure 2: The M1 OSCA learning protocol, seen front a

e ———————

1 MOSCA = Master + Oracle + Sonda (Probe, in Portuguese) + Client+ Apprentice.

XIV Congresso da Sociedade Brasileira de Computacio

| Simpésio Brasileiro de Computacdo e Misica 181

] f’l:he apprentice asks a set of <problem,solution> pairs from the oracle. The pairs are then stored (it should
:e [x;:d v;fhcthgr or not data may l?c eventually erased/changed) by the apprentice and compose the saniple to
Teil usi1 orhea‘rnllng,‘ Every change in the sample makes the apprentice to revise the hypothesis so far learned
1 y;,i thyp.otfcsclls 1; cx?re;:ted from a hypothesis space and satisfies a learning criterion. Of course, any learned

Y esis finds the right solution for all the problems in the sam ’
ample, and finds none i
the counter-examples in the sample. of the wrong solutions o

The apprentice may request a <problem,solution> pair, or even a set of those pairs, from the oracle. There
two w?ys for making this request: (i) When the choice of the problem is left to the ,oracle (who ma‘ do it
f91low1ng or not nay plan, such a previously defined teaching plan), the request is made just b sen{i'
s1gn2'11;.(n) when the apprentice desires to learn to solve a certain problem, he makes his rcquestst{) I s 1a
specifying this problem (of course this must be allowed only in a controllec,l way, or else the a ran'p Srould
take the time just unproductively interrogating the oracle). , ppeentice would
. similarly, the apprentice receives <problem,solution> pairs from the probe. These pairs may b
intentionally erroncous. The apprentice compares his solution against the one propo.sed and (ﬁs lays ?g the
master a.n argumentation justifying the solution. There are two forms of argumentations: explanal:ioZS (wh ;
the solutions agree one with the other) and objection (otherwise). : ' e

For eac?h arg}lmentation presented, the apprentice receives a criticism from the master. Whenever possible
every negat'lve .cnticism makes the apprentice to present an alternative argumentation. When no ﬂtemativé
argumentation is possible, then the apprentice either weakens the learned hypothesis, in such way‘ that it no
more pr(l)duces the pair <problem, solution>, or he consults the oracle, aiming ;t revising the le d
hypothesis and, consequently, revising the argumentation. ’ ’ e

The master, by cither sending a si i i
s gnal or a problem specification, controls thi ! i i
<oroblens salutions ¢ probe's production of pairs
Whenever the apprenlic; weakens his learned hypothesis, thus becoming silent about certain problems
tl}e mas'ter ﬂflds a way of forcing the apprentice to re-strength his learned hypothesis: the master sends (agaix;
either via a signal or via a problem specification) to the oracle a request for generating an adequate sct of pairs

A Cli?nt submits a ;.)rob.lem to the apprentice and expects a solution from him. Whether or not an
argumentation on the solution is sent to the master, depends on how the apprentice was defined

5. Discovery in musical analysis

‘ The musical thinking, when generating a certain work, spans aspects pertaining to a knowledge branch
f'i}fﬂc?llt 'to appr.oach, This has lead us to conceptualizations emphasizing terms, such as "gift" and
inspiration”, which were quite used, in the past, to impose an end to any discussions on music creation. Our
days,‘however, such extremist position fully satisfies neither the artist, nor the scientist, as both of ihem
knowx.ng how sounds effect the men, have been studying the organization of sounds enéompassing as ect;
spanning from its atomic form, pitch up to its final manifestation, the composition. , ’
Perception of this organization in the composition, and perception of the observance of clearly defined
forms. and rules regulating the creative process, indicate the existence of a systematization in the musical
thinking. This systematization is common to all composers in a given context (style-and-school, local-and-time,
;tc.) gnd may be represented by means of a knowledge base constructed by a musician and whic’h can constaml)’l
; d?s‘:;eltlii xfihzorr;z;tz&nédded, modified, substituted, or eliminated (in short, enriched in any form) at the
oo {Xs it was sl}own by R. B. Dannenberg (?993), the musical thinking does not follow a lincar pattern as it
sllx? exact sciences. The reason for this is that many complex factors interact in the musical thinking:
creatxvxty, emotions, intuition, and the proper vibratory nature of sound. However, during the creative proccsé
the'musxcal thinking maintains its relationship with form, structure, and harmony, determining a musical logic
Whlch allows classifying a work as belonging to a style. Those characteristics strongly associate themselves
with those peculiar to given composers.

XIV Congresso da Sociedade Brasileira de Computacio

According to H. J. Kocllreutter (Zagonel & la Chiapnulera, 1985), Ithc c'ompos.itz?ntpro::srsismfol;:)rv:;;[1 f(:;:;
steps: consciousness of the idea, formal conception, choxce'of the musical signs, an fs rugom ogSAe T e
above, (Kugel, 1990; Roads, 1985, Widmer, 1992)' pcrcexvcd. that the reasomgg o 31 ‘ m;;ess _may be
simulated by a knowledge based system zeroing not in the musxlcal work proger, ut H.‘ e p1 e e

atine his work, This system, besides the computational aspects involved .m anal).lzmg a mu ‘ca‘
. tjor gCﬂﬁvl atfl?fformqtion processing, should handle knowledge on domains influencing musical conception:
“fOfk 1~I lhter'ms (i)nvolving‘ concepts from Physics (study of the vibratory nature of the sound), Psychology (study
(I)' g de I;CSS,a sychic phenomenon), and Sociology (study of the ideological aspects of the creato?r), and
;ia?iosltlincs' (ii) AI/)Iusic, with its rules for harmony, melody, etc.; and (i) History of Arts, approacl;mg the
peculiarit’ies of each style in a given period of History. All thlese knowledge areas interact for analyzing a
composer's work and also for further understanding men's 1€asoning process. . N

The study of musical analysis has several facets and is intima.xtely ‘bounc? to Ae:sthencsf ES: s&eyc:n Zae

conditions and the effects of the artistic activity), which canhnot bcld:issofm:tggcfi;c;::rifil;tzrfazguag: we Simpli
is of a musical work is really much more that a study 1o : Jor a
2::1::; :fn taf:ZSfI(:r;al aspects of the work. We adopted the view th.at knowledge on Aesthe}lc}s anikogs}ézt:ryt ;1):
Arts should come to the aid of knowledge on Musical Thf\f:ory. This V\./ay, we Flefme a musical wo g
result of knowledge on the domains of Aesthetics, of Music, and of History of Arts.. ‘ .

We aim at making the machine to behave rationally when performing Musical Arllallyslls, which l:\vo x:
the four technical fields of Music: composition, execution, theory, and ‘slouna' dtgzt;z p;‘oscizss J
investigate, therefore, the conception and development of a system capable of aiding musical analysis.

6. Conclusions . N i
We presented a learning environment whose protocol, identifying the set Qf communications ne‘e' e 1 T
controlling an agent, is an extension of the classic protocol and permits analyzing the process of rev1su;g t 116
knowledge acquired by the apprentice. This environment was studied within an conceptualff:ﬁmewor ,;titC:
i iri i i i f both the reasoning and the structure of the appre X
Semi-Empirical Theories, supporting the expression o : : . ;) :
Under thz tight of both theoretical and practical Machine Learning current results, mtegratm'g hlﬁl‘; l:-:vil
argumentation techniques into the learning system was deemed necessary to get the expert's validation,
in the acquired knowledge.
approval, and confidence in t ' . '
Our experience has shown that most of the currently available learning tools do not fullly st:cltlxsfy .t:e
expert's expectations and needs. More thau interested in a system that mercl){ﬂhas ;he ca;.)ab.xht)lz 0eX pe;:ﬁing
‘ i able to go beyond that by understandably and convincingly
correctly, experts are looking for systems al nde . plin e
€ c jor reasons for this is that the explanations may
what and how they have learned. One of the major 1 . le ¢ ;
should be changed in order to improve the knowledge base. All of this grows 1.n importance when the expe!
uses the machine as an aid for scientific discovery (of course this involves modeling a phenomenon).

If the user wants to teach the system, than he, while playing the role of the 0;3016’1}: shtoulccli;eclf:; :22

i ayi ter, he should use his deep knowledge {0

fevant problems. While playing the role of the master, (] «
::irr‘;ntlyplcarncd knowledge in order to identify lemmas already validated the proofs.. Whlnle -pld);l;:g thle‘:3 1'(())26t ;‘);'

C es and counter-examples. Finally, while playing the ro
the probe, he should produce relevant examples an : : : . ’
appfemice he should choose methods and heuristics to be used for advancing a new learning step in the light o
the last information stimulus received from any of the other agents,

i i] it sti Is
Our approach was corroborated just by few and microscopic experiments (Ferneda, 1992), thus it still calls -

ish i in,
for more numerous and larger scale experiments in order to fully establish itself as a really useful learning

i c an
framework. In spite of this, the way our proposed system solves learning problems may be scen as
' g i idactical it
advancement at least as a methodologically and di con . P
problem in a way understandable and profitable to both the application domain expert and the Arti
Intelligence researcher. It should be notice: sured
For accomplishing that, it is necessary that all heuristics inv

ly relevant concept, in as much as it sees the learning

d that we assured the possibility of refuting the learne‘d.knowledge. :
olved in the knowledge acquisition may be .

| Simpésio Brasileiro de Computacio e Misica 183

reevatuated. This justifies our approach in adopting the Semi-Empirical Theories and the MOSCA protocol for
representing and evolving the knowledge, respectively.

Musical Analysis secks to explain a musical work by making use of bodies of knowledge such as
Aesthetics, Music, and History of Arts. It is our firm and well-founded belief that the environment here
presented will show itself to be a satisfactory aid for the task of performing Musical Analysis, since the
environment makes room for those bodies of knowledge (what is fundamental for the conception of a musical

work) and allows the construction of a theory that permits the characterization of the work through dialogues
with a human, application-domain expert agent.

References

T. R. Addis (1988). Knowledge organization for abduction, Interdisciplinary Information Technology
Conference, Bradford University (England).

N. Aussenac-Gilles, J.-P. Krivine, J. Sallantin (1992). L'acquisition des connaissances pour les systémes a base

de connaissance, Revye d'Intelligence Artificielle, Vol, 6, n° 1-2, Hermés, Paris.

C. Barboux (1990). "Contréle par objection d'une théorie incomplite”, Doctorate Thesis, Université de

Montpellier (France).

S. Boucheron (1992). Théorie de l'apprentissage: de I'approche formelle aux enjeux cognitifs, Hermés, Paris.

R. B. Dannenberg (1993). Music representation issues, techniques, and systems, Computer Music Journal, Vol.

17, n° 3, pp. 20-30, MIT Press.

E. Ferneda (1992). Conception d'un Agent Rationnel et examen de son raisonnement en géométrie, Doctorate

Thesis, Université de Montpellier (France).

G. Fisher, A. C. Lemke, T. Mastaglio, A. 1. Morch (1991) The role of critiquing in cooperative problem
solving, ACM Transaction on Information System, Vol. 9, n° 3, pp. 123-151.

P. Kugel (1990). Myhill's Thesis: There's more than computing in musical thinking, Computer Music Journal,

Vol. 14, n° 3, pp. 12-25, MIT Press.

J.-P. Miiller (1987). Contribution & I'étude d'un agent rationnel : spécification en logique intensionnelle et
implantation, Doctorate Thesis, Institut National Polytechnique de Grenoble (France).

A. Newell (1982). The knowledge level, Artificial Intelligence, n° 18, pp. 87-127.

C. 8. Pierce (1934) Scientific method, in Collected Papers of Charles Saunders Pierce, P. Weiss (Ed), Harvard
University Press.

Ph. Reitz (1992). Contribution & l'étude des environnements d'apprentissage. Conceptualisation, Spécifications
et Prototypage, Doctorate Thesis, Université de Montpellier (France).

C. Roads (1985). "Research in Music and Artificial Intelligence”, ACM Computing Surveys, Vol. 17, n. 2, pp.

163-190.

J. Sallantin, J.-J. Szczeciniarz, C. Barboux, M.-S. Lagrange, M. Renaud (1991). Théories semi-empiriques:
conceptualisation et illustrations, Revue d'Intelligence Artificielle, Vol. 5, n° 1, pp. 9-67, Hermés, Paris.

J. Sallantin, J. Quinqucton, C. Barboux, J.-P. Aubert (1991). Théories semiempiriques: éléments de

formalisation, Revue d'Intelligence Artificielle, Vol. 5, n° 1, pp. 69-92, Hermes, Paris,

J. Sallantin, J. Haiech (1993). L'aide & la découverte scientifique: évaluation sur l'investigation des séquences

genériques, Revue d'Intelligence Artificielle, Hermés, Paris.

G. Widmer (1992). Qualitative perception modeling and intelligent musical learning, Computer Music Journal,
Vol. 16, n° 2, pp. 51-68, MIT Press.

B. Wiclinga, J. Boose, B. Gaines, G. Screiber, M. van Someren (Eds) (1990). Current trends on knowledge
acquisition, Proceedings of the European Knowledge Acquisition Workshop.

B. Zagonel, S. M. 1a Chiamulera (orgs) (1985). Introdugdo a Estética e a Composigdo Musical Contempordnea

- . J. Koellreutter, Editora Movimento, Porto Alegre (Brazil).

| Simpésio Brasileiro de Computacio e Misica

185

An integral educational project: Musical Production

Ricardo Dal Farra

Escuela Técnica ORT
Produccion Musical
Yatay 240
1184 Buenos Aires
Argentina
e-mail: dalfarra@clacso.edu.ar
or rqdalfar@arcriba.edu.ar

Abstract

The ORT Technical School has developed and started recently an educational project
that integrates scientific, artistic and technological aspects related to musical
production and creation. The formation of the future "Technicians on Musical
Production” aims to cover a wide space existing amongst those who develop their
work in the creative field and those who work in a specifically technical area.

Introduction

The ORT Technical School has developed and started recently a project that integrates scientific, artistic and
technological aspects related to musical production and creation. After completing the first three years of
 secondary school, students can choose among several specialities to complete their studies, such as: Blectronics,
. Industrial Design, Mass Media, Computers, Construction, Chemistry and lately, Musical Production. The
speciality Musical Production extends for three years (a total of 6 years of secondary school) and students are
“graduated as "Technicians on Musical Production”.

Musical Production |

The syllabus of this speciality is formed of different subjects aimed Lo an integral education: Anatomy and
Physiology, Oral and Written Expression, State and Society in Argentina, Gymnastics, Swimming, English,
Economics, altogether with other subjects whose contents furthers the integration of scientific knowledge with
the development of the creativity and the capacity to use efficiently the available technology: Musical
Technology Workshop, Elecironics, Physics, Electroacoustics Workshop, Mathematics, History of Musical
Culture, Ear Training, Musical Structures, Keyboard Workshop, Musical Production Seminars, Multimedia
Laboratories, Applied Computers and Final Project.

_ The permanent coordination among the areas is the fundamental aspect that make this plan successful.
Therefore, the contents of Mathematics are related to the proper problems of the sound and music areas. The same
is applied to Physics, both in the generation, transmission and reception of sounds, as on recording and playback.
Even in English as well as Oral and Written Expression, students undertake topics of their speciality without
lorgetting their general education.

. Being that the integration among different subjects is the key of the speciality, the idea is more evident in
the subjects directly connected with music and sound. Subjects such as Musical Structures, Ear Training, History
of the Musical Culture and Keyboard Workshop are functionaily coordinated and connected among themselves;
id the different topics studied in the Musical Technology Workshop (main core of the speciality in the first
ar) is thoroughly related to Ear Training, Electronics, Musical Structures, Physics, Keyboard Workshop,
nglish and Mathematics.

- As1 pointed out before, the Musical Technology Workshop is not - during the first year - one more subject.
s the "heart" of this speciality, an experimentation, investigation and creation center. Students work in pairs,
aring workstations formed of hardware and software that let them develop (during a prefixed time) different

XIV Congresso da Sociedade Brasileira de Computacio

contents such as: additive synthesis, sampling, substractive synthesis, digital recording, musical notation, sound
processinig, analog recording, FM synthesis, and construction of musical structures, amongst others. The
different workstations are adapted to the necessities of each one of the subjects, and students "rotale" from one to
another, cormpleting the experiences proposed. The equipment of each workstation is of the lastest generation and
inciudes a computer (Macintosh or PC) provided with the software to elaborate, process, control, record and
reproduce sound (Digidesign's Sound Designer II, and Turbosynth; Opcode's Studio Vision, Galaxy Pius and
Max; Passport's Master Tracks, Encore and Alchemy; Farallon Computing's SoundEdit; Twelve Tones'
Cakewalk Pro for Windows; Mark of the Unicorn's Digital Performer, Mosaic and Unisyn; Coda's Finale; OSC's
Deck; ...). At the same time, there are synthesizers and samplers (Korg's Wavestation A/D, OU/W and M1; E-
mu's Emax, Emax I, and MPS Plus; Yamaha's DX711, TX81Z and SY35; Kawai's K5; Oberheim's OB-1;
Kurzweil's K2000; ...), analog and digital recording systems (Digidesign's Audiomedia IT; Revox's AT7, analog
multitrack cassette decks; ...), sound processors (Roland's RSP-550; Boss' SE-50; graphic equalizers; ...), one
drum machine (Roland's R8 MKII), an spectrum analyzer, and a keyboard controller (Roland's A-80; ...), among
other elements.

The infrastructure of the Musical Technology Workshop is very important to form creative professionals
who should know how to take profit out of the latest technology when available, and - at the same time - to be
able to accomplish a good task even when the work conditions are not the best (an essential aspect to face, taking
into account the present Latin American reality).

In 1993 the first year of this new course was completed. Now a small recording studio is being finished to
be used by the students on their second and third year, and a multimedia lab is planned for their last year at the
school. The recording studio have both analog and digital recording systems (Digidesign's Sound Tools 11; 8
tracks digital tape recorder; DAT recorder; 8 tracks analog tape recorder; 2 tracks analog tape recorder; ...}, a 32
channel mixing board, professional monitor speakers (Tannoy and JBL), different kind of microphones (Shure's
SM 81, SM98A, SM57 and SM58, Crown's PZM 30F, Sennheiser's MD421 and Beyer's MS500TG; ...}, several
sound processors (Lexicon, Yamaha, Ensonig, Roland, Behringer, ...), plus a Macintosh Quadra 840AV and a
PC486 with softwares for different applications (Digidesign's, Digital Intelligent Noise Reduction, Opcode's
Cue; Passport's Producer; Soundtrek's The Jammer; Emagic's Logic Audio; Cool Shoes’ Sound Globs; Jupiter
Systems' Multiband Dynamic Processor and Infinity; Steinberg's Cubase Audio;...), & sampler and synthesizer
keyboard (Kurzweil's K20008), a drum controller, and some acoustic instruments. At the multimedia lab,
students will work with multimedia and hypermedia, and also witl experiment with the creation and editing of

sound effects and music for video and films.

During the last year at the school, the students will receive a balanced program combining art and science:
theoretical scientific principles of electroacoustics; practice with the technology of recording, electronic musical
instruments and live sound amplification; computer programming; study and creation of musical structures both
from the contemporary academic and experimental, as well as traditional folk (ethnic / world music) and non-
academic (pop, rock, jazz, ...) point of view will be worked. An annual final (and advanced) project will be

developed by the students putting in practice the knowledge acquired.

Inteligéncia Artificial, Psicoactstica
e Modelos Cognitivos

Conclusions

The formation of the future "Technicians on Musical Production” aims to cover a wide space existing
between those who develop their work in the creative field and those who work in a specifically technical area.
This educational project aims to form individuals in the scientific, artistic and technological realms with a careful
balance, so that the Technicians on Musical Production will be ready to work in different technological-musical
fields as soon as they graduate or, on the other hand, to continue their mastering at the university. In this last
case, and taking into account that superior studies are usually directed towards scientific and/or technological
aspects or, on the contrary, {0 purely artistic ones (loosing multiplicity of perspectives and interfering on the
coordination of efforts between professionals highly specialized that works on multidisciplinary teams), the
Technicians on Musical Production will find a firm background in his secondary school formation which would

complement the aspects forgotten in the university.

Aknpowledgements

This educational project is being realized thanks to the efforts of the directive staff of ORT Argentina and
the ORT Technical School, the director of the speciality, and all the teachers involved on the project, convinced
of working in a different proposal that supports a plan of real change for our environment.

(June of 1994)

| Simpdsio Brasileiro de Computacdo e Miisica 189

A Connectionist Model for Chord Classification

FABIO GHIGNATTI BECKENKAMP*
PAULO MARTINS ENGEL**

CPGCC, INSTITUTO DE INFORMATICA, UFRGS
Caixa Postal 15064
91501-970 Porto Alegre - RS- Brazil

ABSTRACT

This work is a contribution to the unification of the worlds of computer science and
music. This is a first step in the direction of opportunities offered by connectionism
on music research. This paper studies the application of a connectionist model on an
actual problem of music domain and tries to demonstrate the efficiency of using
connectionism in the chord classification problem. This work specifies a neural
network model based on Backpropagation architecture to recognize four types of
chords: major, minor, diminished and augmented. Simulations results have shown
that the network recognized the four chord types for twelve major and twelve minor
tonalities.

1 Introduction

Music is a human expression that is difficult to study and to model because it evolves great creativity and
esthetic concepts. The problems encountered on such study have challenged researchers interested in different
aspects, reaching from those that investigate music applying traditional methods to others that apply artificial
intelligence (Todd, 1991).

The connectionist paradigm offers a new and unified method of music investigation due to its inherent
aspects such as learning, generalization and feature abstraction. Neural networks offer powerful tools to be used
by researchers to solve actual music problems such as: human voice and instruments sound perception,
performance interpretation, composition process understanding, musical education, etc. Neural networks and
music research might provide benefits to musicians by providing new tools to help their work on music.

The chord classification is a relatively easy task for a musician but it is not easy to model the musician
knowledge used to do this task. Some efforts to model the chord classification task were done. Pitts and
McCulloch in 1947 (Pitts & McCulloch, 1947) created a model based on the cortex tonototopic structure, where
equal intervals on the frequency axis were assumed to map into equal cortical distances. Berenice Laden (Laden,
1989) used this interval approach to create two artificial neural models for chord classification. The first model
was based on cognitive representation of musical pitch and the second on psychoacustic representation.

2 Goals
This work has two main goals:

» The proposal of a chord classification neural model, and

» the experimentation and validation of neural network applied to music cognition domain,

" Student of Master Degree in Computer Science at Universidade Federal do Rio Grande do Sul - UFRGS, E-
mail: fgb@inf.ufrgs.br

" Professor at Universidade Federal do Rio Grande do Sul - UFRGS E-mail: engel @inf.ufrgs.br

XIV Congresso da Sociedade Brasileira de Corlp_g@

190

Chords are more than two simultaneously played notes. Thc chords considcr.cd 0{1 lmri i\:/lg:ka;:re “L‘rexrz:([ics(,l 1a_ c;i
chords of three notes. The proposed neural network must clasm.fy fgur chord types: r:?ljgr, n Ch,ordgs; e ev()ln
diminished. Those types were chosen because they are the basic triads for more sophistica ve

i] ven, ninth, ete.) o .
Omcr’l"ltr:écgl?)lrs(lacsl;:sit‘xcau’on problem consists of presenting a ‘chord ?o lhc input of t'hcdncftwr(l)r]r(‘:.i '{Vt;lss 11:;):;::1;1
activate the network producing a network output. The output S}gnals indicate what kind of cho p ed.
The network used to model this problem was the Backpropagation network.

3 Methodology

Chord classification has been investigated by two.points of vie‘w: p.sychoacustlc.and cognitive,
Psychoacustic researchers have been interested in low-level pitch representations like SO;]G uf)hysxcdp[aran;.e(ter% ss
frequency. Cognitive researchers may be interested in more abstract levels such as rhy]in arll tt(])na‘n y. The
neural network rescarchers might be interested in both levels (Laden 1989). In this work only the cognitive

i idered.
appr(;id:tri/sﬂluk?zrcl?n\ilscimplemcmcd the Backpropagation algorithm based on Rumelpart (Ru{nelhart &
McClelland, 1986). The Backpropagation network is used to solve problems that.krect]luxrc co;nf;i) exrepelmcrn
recognition and that need to map nontrivial functions. The proposed neural petwolx S owr:e(zemsgt\;]c tw“{as
modeled with three layers: the input -, the hidden -, and the output lay‘cr. 'fhe input layer rep oeents the ¢ le ve
notes on chromatic scale. A hidden layer maps the input patterns into interval patterns, The output layer
indicates what kind of chord was presented.

Chord Type

| Simpdsio Brasileiro de Computacio e Misica 191

this case, a large computational effort will be necessary due to the increase of connections number among
network layers,

The output layer has three units that were modeled according to the existent intervals among triad notes. The
chord classification can be determined by verification of those intervals. The first output neuron represents the
interval between the root and the third of the chord. The second output neuron represents the interval between the
third and the fifth of the chord and the third output neuron represents the interval between the root and the fifth of
the chord.

In the first and in the second neuron the output must be 1 if the interval is minor and it must be 0 if it is
major. In the third neuron, the output must be 0 if the interval is diminished, 0.5 if it is perfect and 1 if it is
augmented. The expected output patterns for the four types of chords are presented on table 1. The utilization of
the second neuron might be unnecessary because it is not important to know the intérval between the third and
the fifth of the chord, but it was considered to model all existing chord intervals.

Table 1 - Output Patterns

1% neuron | 2° neuron | 3* neuron Chord
0 1 0.5 major
1 0 0.5 minor
1 1 0.0 diminished
0 0 1 augmented

For network training, 48 chords were used; twelve of each type. One example chord is presented to the
network at each training cycle. One different chord is selected at each interaction from the chord example set. To

assure that the network training will not privilege one chord type, two chords of the same type arc never
successively presented to the network.

4 Result Analysis

In spite of the fact that the network weights were initialized with random values, each simulation of a BPN
can have different performances. This initialization affects directly the number of interactions that the network
needs to learn all training examples. Due to this fact a great number of simulations were realized with each
network configuration and on next tables only best results are shown.

The learning rate parameter (1), is very important for the training process. With a large M the network

training will need a small number of interactions to learn the examples but it can cause the training crror to go
toward a local minimum. If it happens the network can not find an acceptable solution. On the other hand, a
_small n ensures that the network will scttle on an acceptable solution but it will nced more training
interactions.

Table 2 shows initial simulation results. These simulations used a small 1 = 0.25 so that exhaustive
training was performed to allow to the network to scttle on a solution. Another objective of these simulations
Was to find an appropriate number of hidden units. The network outputs were observed during the learning phase
to verify if they had been modificd to settle on a solution.

Table 2 - Short 1 Training

Network Numbcr o_f 7 o Correct | Interactions
Figure 1 - Neural Network Architecture Hidden Units Chords
1 36 0251 0.9 48 41520
The number of neurons on input layer is determined by the pitch represcmal.ion. The chosen pflt; 2 25 0251 09 48 35760
representation is simple: 12 input neurons were stipulated where each neuron is associated to one note O i 3 9 0.25 0.9 a3 %6352
nagl)ural scale. Each input neuron is activated when the respective note is played. The octavé: of :1;16 pla;izdt?r;)\e : 4 3 0251 09 0 300000
’ at the sa !

i If the same note is playe

not considered. All notes are transposed to only one oclav.e. . s : s
different octaves, only one note will be considered. The activation values of the inputs can be 0 or 1, wher
means a not played note and 1 a played onc. . by wion d
The ideal number of hidden neurons will be determined by inspectior n
higher the number of hidden neurons has the neural network, the better will be the convergence posst

The simulations of table 2 correctly classificd 100 percent of trained chords but the number of interactions

ini i ceded for training was larger than expected. The network that had the best performance was number 2, that was
uring the neural net training. T

bility:

trained with 25 hidden units. The network 4, that had only three hidden units, did not recognized any chord afiep:

300000 interactions.

Another way to try to reduce the interaction number is to control the momentum (o). Sewing it to 0.2 fop f
the first 40 interactions and to 0.9 for the other ones will reduce the network probability of reaching a local
minimum (Franzini, 1988). Table 3 shows a comparative performance between network training using one ang
wo o values. It shows the difference of performance between small and large n too. Network 2 is repeated o

an easier comparison.

XIV Congresso da Sociedade Brasileira de Computacis
Tl

Table 3 - Two o Training

Network

Number of
T
Hidden Units : o

Correct
Chords

Interactions

25

0.25 0.9

48

35760

25

0.25 1 0.2/0.9

48

37584

25

0.9 0.9

48

18096

25

0.9 10.2/0.9

48

36336

The use of two 0. during the training did not increase the network performance as expected. The network'g

which was trained with large 7 and large o, got the best training result.

The interaction number needed for training is still very large. This fact causes trai
selection of the example set it is important to cover all the problem domain and not to favour one pattern. Th
number of examples used for training is the same for all patterns but the problem domain is not covered. Th
input of the network was modeled with 12 binary inputs that means 212 = 4096 possible input examples

Considering only triads, it is a combination of 3 = 220 possible input triads.
12

The domain of the problem (48 chords), is smaller than the input domain so that the network is;n()
mapping all possible input patterns. Besides this, it is easy to verify that the 48 chords cover all possi
examples for the 4 types of chords. Simulations were realized with less than 48 examples but the network
not able to generalize in the way to classify not trained patterns.

To solve this input modeling problem the network was trained with the 48 known triads plus. som
examples from the rest possible triads. Those triads were prescnted to the network as unknown patterns and we
called "random triads” because they were randomly searched from the rest of possible input triads. These rando;
triads does not necessarily have musical meaning. During the training, one random triad is scarched and presen
to the network repeatedly after a certain number of training cicles (n). The trained output pattern for these randor

triads has zeros for the three output neurons.

Simulations were done to verify if the use of random triads helps to decrease the number of ttait

interactions and to find the best value for n.

Table 4 - Training with Random Chords

Network

Number of
Hidden Units

o

Correct
Chords

Interactions

8

25

0.9

48

19536

9

25

0.9

48

21312

10

25

0.9

48

13968

i1

25

0.9

48

15360

The results on table 4 show that the use of random examples really decreases the number
training interactions. The network 10 had the best performance, where 48 chords

13968 interactions.

ning set adjusts, In tﬁ

of el
were correctly recognized

| Simpésio Brasileiro de Computacdo e Misica 193

5 Conclusions

This paper demonstrated the use of connectionism in the solution of a musical problem and shows the
capacity of using such unconventional musical investigation technique. This work presented a cognitive
connectionist model that solved the chord classification problem. It also made investigated network learning
parameters, training examples and network architectures that provided an increase of the network performance.
The same model has been tested to classify the 4 triads types plus seven chords. The unique model
modification is the increase of one output neuron to indicate the presence of a seven interval in the input chord.
The new model has a very similar performance to the older one, indicating that other chord classes may be
considered in the future. In further studies this model can be used for more complex chord classification, where
tonality and chord inversions may be considered. ,

Bibliography

Franzini, M. A .Learning to recognize Spoken Words: a study in connectionist speech recognition. In:
Conectionist Models Summer School. Proceedings... San Mateo: Morgan Kaufmann, 1988, p. 407-416.

Laden, Berenice; Keefe, Douglas H. The Representation of Pitch in a Neural Net of Chord Classification,
Computer Music Journal, v.13, n. 4, Winter 1989.

pitts, W.; McCulloch, M.C. How We know Universals: the perception of auditory and visual forms. Bull.

Math. Biophysics, v.9, p. 127-147, 1947.

kRumelhan, David; McClelland, James. Parallel Distributed Processing, MIT Press, Cambridge, MA, 1986, v.1,

p. 318-334,

Todd, Peter; LOY D. Gareth. Music and Connectionism. MIT Press, Cambridge, MA, 1991, p. ix-xi, 3-19, 31-

33, 39-41, 64-85.

| Simpésio Brasileiro de Computacdo e Misica 195

The MusES system : an environment for experimenting with knowledge
representation techniques in tonal harmony

FRANCOIS PACHET,
LAFORIA, Institut Blaise Pascal, 4, Place Jussieu, 75252 Paris Cedex 05, France

Abstract

We report here on current works on the MusES environment, designed for experimenting with various object-
oriented knowledge representation techniques in the field of tonal harmony. The first layer of MusES is a
repository of consensus knowledge about tonal harmony, including an explicit representation of enharmonic
spelling, as well as representation of intervals, scales and chords that support standard computations. We give an
gverview of several systems built on top of MusES: a system for the analysis of jazz chord sequences, a system
for the automatic generation of harmonizations, and a system that generates real-time jazz inprovisations, We
give an overview of MusES and its extensions and discuss several representation issues and their solutions in

MusES.

1. Introduction: yet an other Smalltalk music representation system

Music analysis has long been a favorite domain for researchers in Artificial Intelligence. Within Al, Object-
Oriented Programming (OOP) has traditionally been a favorite paradigm to build complex musical systems,
especially to oriented towards synthesis (from the Forme system (Cointe&Rodet 1991) to the MODE system
Pope (1991), the Kyma system (Scaletti (1987)), and ImprovisationBuilder (Walker and al., 1992)). Of course,
object-oriented programming has been - and is used - for almost any kind of complex software, but there is hardly
o mention in the literature of attempts to use specifially OOP techniques to implement analysis systems in
nal music. Following this tradition, we are interested in developing intelfigent systems specialized specifically
tonal harmony, using object-oriented techniques. This paper is a report on our results 50 far, embodied in the
MusES system,

From a totatly different point of view, our main object of study is the construction of large knowledge bases,
sing OO technigues, and Smalltalk in particular. In this context, tonal harmony is seen as an ideal field for
bvious reasons: it is complex yet understandable, involves complex structures which call for non-irivial
epresentations (e.g. intervals, chords), requires adequate representations of time, involves abstract notions (such
s analysis, degrees), and so forth. In this respect, we are interested in the integration of OOF with varions
inference mechanisms to produce truly reusable knowledge-based components.

_ We will first briefly describe the foundation of MusES$, dealing with pitch classes and basic concepts of tonal
armony, them give an overview of three systems built on top of MusES, and end up with a discussion of the

Representation of pitch classes
2.1, The problem ?

One of the foundations of the MusES system is the representation of pitch classes (hereafter referred to a3
), that respects enharmonic spelling (i.c. the difference between notes that spell differently but sound the
me, such as Eb and D#). Enharmonic spelling is as vital to music analysis, as orthography is 0 grammar and
antics. Although it may seem a remarkably simple problem, it has, 10 our knowledge, yet never been fully
dressed. For instance, Winograd (93) emphasizes the importance of taking enharmonic spelling into account,
{ proposes an ad hoc representation of chords as Lisp dotted lists. Similarly, Steedman (84) proposes a
lution for performing harmonic analysis of chords sequences but, considers all the entities (chords, iniervals or
) as Prolog-like constants and is interested only in higher level properties of sequences deduced from the
¢ ordering of their elements. More generally, MusES addresses the problem of providing a "good"
esentation of the algebra of pitch classes, including the notion of "enharmonic spelling”, and a representation

196

of intervals, scales and chords to serve as a foundation for implementing various types of harmonic analysis
mechanisms. This calculus must take into account various facts and properties of pitch classes, such as :

- There are conceptually 35 different PCs : 7 naturals, 7 flats, 7 sharps, 7 double sharps and 7 double flats,
with only one occurrence of each PC (in our octave-independent context). Practically, this means that, for
example, the minor second of B (C) is physically the same note as the minor seventh of D, and so on.

- PCs are linked to each other half-tone or tone wise, and form a circular list. But some notes aré pitch-
equivalent, (e.g. A# and Bb , or C##, D and Ebb).

- There is an non trivial algebra of alterations, which includes the following pseudo-equations :

#0b =b o# =identity.
For any x in (#, b, natural), x o natural = natural.
This algebra is non trivial because not everything is allowed, at least in the classical theory, e.g. triple

sharps.

- PCs are linked by the notion of interval, which, in a way, preserves this algebra. For instance, the
diminished fifth of C is not the same PC as the augmented fourth of C, but both PC sounds the same.

- Certain intervals are forbidden for certain PCs : for example, the diminished seventh of Cb does not exist (it
would be B bbb 1).

- Certain scales do not exist, by virtue of the preceding remarks : G# major is impossible (because it would
contain a F## in its signature). The same holds for Db harmonic minor, and o on,

2.2. Pitch classes as instances

Although it is possible to write a global algorithm in any procedural language that takes all these cases into
account, there is clearly here a better solution, which consists in treating pitch-classes as instances of classes, in
the sense of OOP, and alterations as methods for these classes, using polymorphism to represent their algebra,
and all the properties mentioned above. This approach not only yields a simple implementation, but also
provides us with a clear understanding of the operations on pitch classes.

We define 5 different types of pitch-class classes (to avoid long name, we refer to pitch-classes as "Note"):
PCNatural, PCSharp, PCFlat, PCDbleFlat and PCDbleSharp. Distinguishing between different
classes for pitch classes gives us a precise definition to alterations : the #, b , and natural, are then represented as
polymorphic methods on these classes. For example, the # operation maps instances of PCNatural to
instances of PCShaxp: A# is then seen as the result of operation # to note A.

This operation is polymorphic because there are actually four distinct sharp operations, depending on the class
of the argument. In order to represent notes according to these requirements, we define a hierarchy of classes as
follows, where each class defines its set of instance variables and operations : PitchClass represents the root
of all classes representing pitch-classes. It is an abstract class and has no instance variables. PCNatuxral
represents natural pitch-classes. There are 7 instances of PCNatural, representing the 7 natural notes (A, B, C,
D, E, F, G). They are linked to each other according to the order (A, B, C, D, E, F, G), and have two pointers on
their corresponding sharp and flat PC. PCAltexed is the root of the classes representing altered (and doubly
altered) notes. It defines only one instance variable (natural) pointing back to the natural note it comes from
(e.g. A#, A##, Ab , and Abb all have A as their natural). Finally, there are four subclasses of PCAltered for
representing respectively sharp, flat, doubleSharp and doubleFlat notes. These classes implement the methods
sharp, flat and double flat so as to respect the natural algebra of alterations. As an example, here is the list of all

the implementations of method £lat:

{PCNatural methodsFor: 'alterations'! {PCFlat methodsFor: 'alterations'!

flat flat

Aflat Alat
{PCSharp methodsFor: 'alterations'! IPCDbleSharp methodsFor: ‘alterations'!
flat flat

“natural Anatural sharp

Note that the flat operation is intentionally not defined for class PCDbleFlat. The flat message sent to 2

PCDbleFlat will raise an error, which is consistent with our philosophy. The same patterns applies for
ion of intervals, of

method sharp in PCDbleSharp, as well as for most operations in pitch classes (computat;
semitones distances, transpositions, etc.)

X!V Congresso da Sociedade Brasileira de Computacio

| Simpdsio Brasileiro de Computacdo e Miisica 197

3, Basic Harmony

~ Once pitch classes are correctly represented, we add the representation of all the basi

;)] nted, c concepts of tonal
harmony, including octa}ve-dependem notes, intervals, scales (classical and exotic ones), and chords. TIt)lese classes

and meth;}ds were des_xl%ned ao support basic computations such as the one taught in first year courses. For

reasons of space, we will not discuss their representation here (Cf. Pachet (1994) for detail i i

few examples of what the system can do. ¢) o and simply give a

3.1. Alterations on pitch classes and OctaveDependentNotes

A bunch of {nethods represent most common computations on pitch classes and octave dependent notes, to
compute alterations, and test pitch equality, such as: '

PitchClass C > C "PCs are accessed by cl "
PitchClass C sharp 2 y class messages
PitchClass C sharp sharp flat -> C#

-> Error: ‘flat’ not understood by class DoubleFlatNote

PitchClass C sharp pitchEquals: Note D flat -> true
(PitchClass C sharp octave: 3) sharp -> C##3 " an OctaveDependentNote"

3.2. Intervals

. Interva]s. are represemegi as first class objects. Methods allow their creation from notes, and their manipulation
in any possible way. Here is an excerpt of methods dealing with intervals:

PitchClass C flatFifth -> (@)
PitchClass C augmentedFourth -> F#
PitchClass C majorThird majorThird -> G#
(PitchClass B sharp octave: 3) fifth > E4
PitchClass C flat diminishedSeventh -> error: illegal interval
nterval diminishedFifth bottomlIfTopls: (PitchClass F sharp) ->
Interval diminishedFifth bottomIfTopls: (PitchClass G flat) -> Dbb
terval majorThird reverse -> minor sixth
nterval perfectFifth + Interval majorSecond -> majorSixth
itchClass C intervalWith: PitchClass F sharp -> augmented fourth

:3.3. Scales

- MusES providc}s a represemf'nion of scales that allows easy computation of derived modes, and derived scale-
lone chords. Adding new exotic scales is done by defining new subclasses of class Scale, with corresponding

ferval lists,

-> Ab major
->(AbBb CDbEbFG)

itchClass A flat majorScale notes
->(CDEbFG AbB)

itchClass C harmonicMinorScale notes

4.

Chords

hords are an important - an complex - concept in tonal harmony. MusES provides a complete vocabulary
allows to name and manipul{l[e all possible chords (from 2 to 7 notes). Chords may be created either from
hame (a string), or from a list of notes. Here are some examples of chord name computations using both

leChanisms:

198 XV Congresso da Sociedade Brasileira de Computacso"

OrderedCollection (D# Fi## A# C##)

{Chord new fromString: 'D# maj/’) notes
OrderedCollection CEGD#F A)

(Chord new fromString: 'C 13 augd n07) notes

Chord newFromNoteNames: 'CEG' [Cl
Chord new FromMNoteNames: 'CFG' [Csus4}]
Chord newFromMoteNames: 'C E F F# {C 1no5 noY no7 11 augll]

Chord newFromNoteNames: 'Dif F## A CHit) [D# dim5 maj7] "from A. Holdsworth”

Similarly, there are methods to compute the list of all plausible chord names for a list of notes :

i

“the root is one of the notes :
Chord allChordsFromlistOfNoteNames: 'C E G'
- OrderedCollection ([CE min nob no7 no9 noll dim13] [G sus4 no5 6]

"the root is any note, possibly not in the list : "

Chord really AliChordsFromlistOfNotesNames: CEG
> OrderedCollection ({A noRoot min 7] [B noRoot sus4 no5 no7 dim9 dim13 } [C] [D noRoot
susd 1105 79 | {E min no5 nol1 no9 no? dim13] [F noRoot no3 maj7 9} [G sus4 no5 sixth | [A# noRoot no3
dimS5 1 [C# noRoot min dim5] [D# noRoot no3 no5 dim9] [F# noRoot no3 dim5 7 dim9] {G# noRoot no3
105 nol1 nod no? dim13 1 [Ab noRoot aug5 maj7] {Bb noRoot no3 no5 no7 9 aug11 sixth] {Db noRoot no3
no5 maj7 aug9 aug11] [Eb noRoot no3 sixth] [Gb noRoot no3 nob nod no7 augll])

An important notion is the notion of "scale-tone chord”, extracted from scales by successive thirds. The
following expression yields all 4 voice scale-tone chords generated from the scale (C Hungarian Minor) :

{(FlungarianMinor root: PitchClass C) generateChordPoly: 4 ->
OrderedCollection (IC min maj7] [D dim5 7] [Eb aug5 maj7] [F dim5 dim7} [G maj7] [Ab maj7} [B min

dim?1)

Scale-tone chords are used primarily to determine all possible analysis of a chord. According to the context
(e.g. the neighboring chords in the sequence), the right analysis will be chosen (Cf. the analysis of jazz chord
sequences). The following method yields all possible tonalities in which a chord may belong, according to the
existing scale classes:

{Chord new frombtring: 'C maj) possibleTonalities ->

OrderedCollection (

{VofF I—iungarianMinor] {(VIOfE HungarianMinor} IV of G MelodicMinor}
{V of F MelodicMinor} {I of C Major} {1V of G Major}

{V of F Major} {V of F HarmonicMinor) (VI of E HarmonicMinor})

4, Temporal objects

An other important aspect of MusES is the representation of time. Our representation of time is based on a
simple inheritance scheme. A root class (TemporalObject) defines a staxtT ime and aduratiom,
expressed in fractions of a beat. Notions having a temporal extent are defined as subclasses of temporalObject:
OctaveDependentMote, MusicalSilence and OctaveDependentChord (and not Chord). Note that although a lot of
musical notions have temporal extent, not all of them do!. For instance, we thought it was important (0.
represent pitch-classes independently of any representation of time, because all their properties are indeed time-
independent. Hence, the classes representing pitch classes (seen above) are not subclasses of TemporalObject. On
the contrary, Octave-Dependent-Note are represented as having an explicit temporal extension, because no.

interesting time-independent property was uncovered.

e called Melodies. Melodies hold a list of octave-dependent notes. We

Temporal sequences of notes ar : :
olyphonic melodies, because the latter are strongly connected with the

distinguish between monophonic p

| Simpdsio Brasileiro de Computacdo e Mdsica 199

l.eprg;sentalion of chords, and involve very specific representations that are irrelevant for simple m i
: L ; ' ! 1 onoph
me]o‘dles.h Ast.nvxal connection to MIDI has been realized, using Bill Walker's Midi Smalltalk pgimitives If)ox? ?I:Z
Macintosh. Since this is not our priority, only basic (but useful enough) play functions have been implemented

and nO sophisticated recording (and hence quantization) is realized in the current version.

4.1. Graphical Editors for melodies

Graphical score editors are not only useful for our purposes. The i i
: 1 5 y are, in a way, particular kn
ncorporating lots of knowledge about musical notation. For instance, the problZmpof knowingoziﬁgﬁe\\?:;e ti;

 draw beams (up or down), how and when to group eighth or sixteenth notes to i

. . Y) gether, how to split not
. durations exceed certain amounts of time (syncopations), where to position notes and so forth, age probfll:n\ght?lii
 do require lot of musical knowledge to be solved. We started to implement a series of graphical editors (Cf

jgure 1) for both monophonic and polyphonic melodies, with standard edition operations (key transpositions.

r:é)y/'cm/tgaste, ttlleln/out,d eui.) For the moment these editors are written in Smalltalk. However, we plan u;
esign them using more declarative knowledge representation mechanisms (constraints i 2 i

utorial system about musical notation, ¢), and integrate them in a

Extensions

MusES is used (and validated) by several knowledge-based system built on top of i i i
t.
three of them here. More details can be found in the references. Y p ofit. We give an overview of

3

5.1. Project #1: Analysis of Chord Sequences

The first project is the construction of a knowledge-based analyzer for jazz chord sequences

(and?.Fd be-bop tunes as .found in the Real book/Fake book corpus. Thejaim of thissigswm is. E)h ;Eufgq ‘?:ggis iar:e
tonalities for each chord in a sequence, when possible. Previous approaches to this problem where mostl bz}llsefi
on a formal theory of the underlying domain. For example, Steedman (84) uses context-dependent gramm)a;r rules
to m()d'cl 12-bar blues, that capture all "legal” distortions from the original 12-bar blues sequence. However its
model is not dgrectly implementable, and yields solutions only for well formed chord sequences Or{ the contr:

ur approach is based on a model of the reasoning as it is made by experts, and is divided in two phases?r;,)’
attern re'cogmtton.m which the expert "sees" particular well-known shapes, whose analysis is trivial sucfn as
Two-Five's, Two-Five-One's, Turnarounds, resolutions, etc. and 2) gap filling phase, in which isolaled
ana'?;]zed chtords.are grouped to adjacent analyzed shapes when possible. ' > hon
The system is an extension of MusES with classes to represent chord sequences and obj

analysns (tpe well-knowq shapes, the analysis themselves, etc.). The reasot?ing is reﬁesgg{:fltsb;sﬁefobrasug
xpressed in NéOpus, a first-order forward-chaining inference engine integrated with Smalltalk-80 (Cf. Pachet
~1995))._ The m_odel of the reasoning is described in depth in Pachet (1994b) and Pachet (1991) an(i uses a
declarative architecture for representing control knowledge (Pachet & Perrot (1994)). '

5.2. Project #2: Constraint satisfaction and automatic harmonization

_ This system is an attempt to capture musical rules as found in treatises of h i

les are mos& often stated as cqnsn’aints, such as "the interval between two sucéemsr;?\?g nﬂ()’;g:g]ﬂ:l::gg?yhg{gz?g

dveconsonam . One o§ the major ‘drawbacks _of the p{cvious attempts (Ebcioglu (1991), Chen (1991)) is the
rusfc of the constraint satisfaction .mechamsm, leading to inefficiencies and complex knowledge bases. The

elg é::: systel;n is to ﬁxplore the mtqgration of cgnsuaipt-saﬁsfaction mechanisms (arc-consistency) and

o e%i o es:;rcv (branc) & bound), ‘wuh our existing object structures. This work is still in progress and

Ballows (1994;. ery promising results in terms of efficiency, compared to previous attempts by Chen (1991) and

5.3, Project #3: Simulation of real-time jazz improvisations

(;Crilis system is an attempt to build a musical memory that explains - at least partially - improvisation
elsses. A quel of memory, ba_sed on case-based mechanisms (Cf. Ramalho & Ganascia (1994) has been
oped, and is used in conjunction with a representation of musical actions or PACTs (Cf. Pachet (1991),

XIV Congresso da Sociedade Brasileira de Computacio

Ramalho & Pachet (1994)). The idea is to model the complete sequence of processes involved in improvisation,
from the beginning (parsing of the chord sequence, using the chord sequence analyzer mentioned above) up to the
actual generation of notes. The gencration of PACTSs uses the case-based model of memory in conjunction with
an algorithm that generates PACTSs according to the musician experience, and general knowledge about musical

actions.

T
insert notes

jsert silencey)
sharp

flat
redisplay)
yp 1 step >
down | siep>
measurefine)
% inferbeat B
change ciet » T m
zhangeColor» ! w
!

set durationy
cu >
paste >
co
24 “

note size >
name !
save file) B t

readd file >

Exercice #4 1

[y
Bl
~e

ha d

T,

L 28
2

TN

...._._zy

ha d

Figure 1. The polyphonic score editor.

6. Discussion, future works

6.1. Why could not I reuse MODE classes ?

Reusing the MODE system seemed a good idea, given the range of problems MODE addresses, the fact that it
is written in Smalltalk, a language that many consider as the most reusable of all, However, things did not turn
out to be so easy. Almost no classes from MGDE could be reused, and we would like to give here a few

arguments that may explain why.

" harmony. Enharmonic spelling is considered in MusES as a central

- Tonal harmony versus "enharmonic
de as an extension of any representation that would

issue, as it supports all analysis reasoning. It cannot be ma

not take it into account from the very beginning.
- Analysis versus synthesis. As we said, MODE is oriented towards synthesis (of sounds, music, structures),

whereas MusES is more intended to support the construction of reasoning systems. This has nnexpected practical
effects: reification is not done in the same spirit. For instance, we need in MusES to have intervals represented as
both objects and operations, and therefore have to represent the corresponding relations with pitch-classes, and
octave-dependent notes. This makes the whole music-magnitude classes of MODE unadapted, since these objects
are at the bottom of the hierarchy, and support all the system. By comparison, we could imagine how much of
the Smalltalk environment would have to be changed if collections were represented by chains of pointers rather
than by arrays (as it is the case).

- Representations of time. Out representation of time is also different from the representation of MODE.
MODE introduces the notion of EventList, as a list of association startTime/musical event. This has the
advantage of genericity since the musical events can be any object that define a small set of necessary melhoqs
(including event list themselves). However, it has the disadvantage that musical event do not "know" their
startTime, either directly (by an instance variable) or indirectly (since they do not have any reference 10 the
eventList that hold them). Our representation of time, based on inheritance, SO

Ives this problem, has the major

| Simpésio Brasileiro de Computagdo e Mdsica 201

advz'l'ntage qf b?'ing sirpple to implement, but suffers from the other drawbacks. For instance, information such as
Fhe fp]lo.wmg note in a melody is not easily accessible (in either of the representations). We are currently
investigating a more convenient representation of time, based on the extensive use of "wrappers".

6.2. Conclusion, future works

Wq described MusES, a knowledge base that represent concepts of basic harmony and their most current
operations. We gave an overview of three systems built on top of MusES, that use MusES structures in
conjunction with various inference mechanisms. Future works include 1) The connection of the graphical editors
with MusiTex, an extension of Latex for musical scores, to generate professional quality scores from our editors,
2) The representation of pitch-classes using the two-dimensional Harmony Space interface described in Holland
(89); 3) Continue with the representation of musical rules (counterpoint of simple species), as well as
Schenkerian analysis; and 4) Using MusES and its extensions as a tutorial system.

7. References

Ballesta, J. (1994). Contraintes et objets : clefs de voite d'un outil d'aide 2 la composition. Journées
d'informatique Musicale, Bordeaux, march 1994.

Cointe, P. Rodet, X. (1991) Formes: Composition and Scheduling of Process. In The Well-Tempered Object:

Musical Applications of Object-Oriented Software Technology , 8. T. Pope, ed. MIT Press.

Ebciogly, K. (1992). An Expert System for Harmonizing Chorales in the Style of J.-S. Bach, In M. Balaban, K.

Ebicioglu & O. Laske (Ed.), Understanding Music with Al: Perspectives on Music Cognition, The AAAI

Press, California.

Holland, S. (1994). Learning About Harmony Space: An Overview. M. Smith, A. Smaill & G. Wiggins (Ed.),

Music Education: an Artificial Intelligence Perspective, Springer-Verlag, London.

Pachet, F. (1991) A meta-level architecture for analysing jazz chord sequences. International Conference on

Computer Music, pp. 266-269, Montréal, Canada.

Pachet, F. (1991b) Representing Knowledge Used by Jazz Musicians. International Conference on Computer
Music, pp. 285-288, Montréal, Canada.

Pachet, F. (1994). An object-oriented representation of pitch-classes, intervals, scales and chords. Journées
d'informatique Musicale, Bordeaux, march 1994,

Pachet, F. (1994b) A Refined Framework for Representing Knowledge Based on Simulation. Colloque Langages
et modéles a objets, Grenoble, octobre 1994, to be published.

Pachet, F. (1995) On the embeddability of production systems in object-oriented languages. Journal of Object-
Oriented Programming , Dec. 1995, To be published.)

Pachet, F. & Perrot, J.-F. (1994). Rule Firing with Metarules. Software Engineering and Knowledge
Engineering . SEKE '94, Jurmala, Lettonie. Knowledge System Institute Ed. pp. 322-329, 21-23 june 1994,
Pope, S. (1991). Introduction to MODE: The Musical Object Development Environment. In The Well-Tempered

Object: Musical Applications of Object-Oriented Software Technology , S. T. Pope, ed. MIT Press.

‘Ramalho, G., Pachet, F. (1994). From real book to real jazz performance. International Conference on Music
Perception and Cognition, Litges, Belgium, july 1994,

Ramalho, G., Ganascia, J.-G. (1994). Simulating Creativity in Jazz Performance. Proc. of 12th AAAI conf.

Seattle, aug. 1994,

 Scaletti, C. (1987). Kyma: An Object-oriented Language for Music Composition. in Proceedings of the

; International Computer Music Conference. International Computer Music Association, San Francisco.

~ Ste;gnlmn, MS,; ;}7984). A Generative Grammar for Jazz Chord Sequences. Music Perception, Fall 1984, Vol. 2,

s Pp. O<-77.

Walker, W., Hebel, K., Martirano, S., Scaletti, C. (1992). ImprovisationBuilder: improvisation as conversation,
Proc. of ICMC , 1992,

Winograd, T. (1993). Linguistics and the Computer Analysis of Tonal Harmony. In Machines Models of Music,

Edited by §. M. Schwanauer and D.A. Levitt, MIT Press.

| Simp6sio Brasileiro de Computacio e Milsica

203

ARTIST
An Al-based tool for the design of intelligent assistants for sound synthesis

Eduardo Reck Miranda,
Al/Music Group,
Faculty of Music and Dept. of Artificial Intelligence,
University of Edinburgh,
12, Nicolson Square,
Edinburgh, EH8 9DF,
Scotland, UK.
E-mail: miranda@music.ed.ac.uk

Abstract

In this paper we introduce the fundamentals of ARTIST (an acronym for Artificial
Intelligence-aided Synthesis Tool). ARTIST is a tool for the design of intelligent
assistants for sound synthesis that allow composition of sounds thought of in terms
of qualitative descriptions (e.g. words in English) and intuitive operations rather
than low level computer programming. Our research work is looking for (a)
plausible strategies to map the composer's intuitive notion of sounds to the
parametric control of electronic sound synthesis and (b) how to provide artificial
intelligence (AI) to a synthesiser. In this paper we introduce how we attempted to
approach the problem by means of a compilation of a few well known expert
systems design techniques used in Al research. ARTIST is a prototype system
which embodies the results of our investigation so far.

Keywords: Al-based synthesiser, knowledge-based systems, machine learning

Introduction

In the final quarter of the 20th century the invention of sound recording followed by sound
processing and then sound synthesis have changed our view of what constitutes music. These recent
developments have vastly expanded our knowledge of the nature of sounds. Nowadays, computer
technology offers cornposers the most detailed control of the internal parameters of sound synthesis
and signal processing.

Wanting the effective use of the new technology, composers become more ambitious, but the
complexity also increases. The scale and nature of the compositional task changes, technically and
aesthetically. Theoretically the computer can be programmed to generate any sound one can imagine.
But, on the other hand, this can get composers into trouble. Quoting Bartizre (1989, pp. 116),"ir is 100
easy 1o fail to take various consequences info account, to get technology side-tracked by a tool whose
fascinating complexity can become a disastrous mirage”.

Even if the composer knows the role played by each single parameter for synthesising a
sound, the traditional way of working with computer synthesis, tediously entering exact data at the
terminal, is not particularly stimulating. We are convinced that higher processes of inventive creativity
and musical abstraction are often prejudiced in such a situation. In this case we think that the computer
is being used as a kind of word processor combined with player piano, and not as a creative tool. We
have come to believe that this can be improved by means of an appropriate coupling between human
imagination and artificial intelligence (Al).

In this paper, we introduce the fundamentals of ARTIST (an acronym for Artificial
Intelligence-aided Synthesis Tool). ARTIST is a tool for the design of intelligent assistants for sound
synthesis that allow composition of sounds thought of in terms of intuitive qualitative descriptions (e.g.
words in English) rather than low level computer programming (Miranda et al, 1993a; 1993b;
Miranda, 1994a; 1994b; 1994¢). By an intelligent assistant we mean a system which works co-
operatively with the user by providing useful levels of automated reasoning in order to support
laborious and tedious tasks (such as working out an appropriate stream of synthesis parameters for

204 XIV Congresso da Sociedade Brasileira de Computacdo

each desired single sound), and to aid the user to explore possible alternatives when designing a sound.
The desirable capabiities of such a system can be summarised as follows:

(a) The ability to operate the system by means of an intuitive vocabulary instead of sound
synthesis numerical values,

(b) The ability to customise the system according to the user's particular needs, ranging from
defining which synthesis technique(s) will be used to defining the vocabulary for
communication,

(¢) The encouragement of the use of the computer as a collaborator in the process of exploring
ideas,

(d) The ability to aid the user in concept formation, such as the generalisation of common
characteristics among sounds and their classification according to prominent attributes, and

(e) The ability of creating contexts which augments the chances of something unexpected and
interesting happening, such as an unimagined sound out of an ill-defined requirement.

Apart from graphic workstations (such as the UPIC system (Xenakis, 1992; Marino ¢t al.,
1993; Lohner, 1986)) and medium level programming languages (see (Pennycook, 1985) for a survey),
little research has been done towards a system for sound synthesis that responds to higher levels of
sound description. An early attempt at the definition of a grammar for sound synthesis was made by
Holtzman (1978) at Edinburgh University. Also, Stawson (1985) bas proposed - not implemented on a
machine though - a kind of vocabulary for sound composition based on his theory of sound colour
which, we believe, he made up from Helmholtz's theory of vowel qualities of tones (Helmholtz, 1885).
Lerdahl (1987) too has done some sketches towards a hierarchical perceptually-orientated description
of timbres. Apart from these, it is worth mentioning that there have been a few attempts towards signal
processing systems that understand natural language. The most successful ones are interfaces
developed to function as a front end for systems which perform tasks to do with audio recording studio
techniques such as, mixing, equalisation, and multitracking (c.g. CIMS (Schmidt, 1987) and Elthar
(Garton, 1989)). More recently, Ethington and Punch (1994) proposed a software called SeaWave.
SeaWave is an additive synthesiser (Dodge and Jerse, 1985) in which sounds can be produced by
means of a vocabulary of descriptive terms. Although of a limited scope, SeaWave proffers an
excellent insight and it seems to work well, Vertegal and Bonis (1994) also have been working
towards a cognitive-orientated interface for synthesisers.

We begin the paper by introducing the problem from a musician's point of view. Then we
introduce the signal processing of the synthesiser which will be used as an example study. After this,
we indicate some methods for describing sounds by means of their atributes and suggest a technique
for mapping those attributes onto the parameters of a synthesiser. Then we study how this technique
works and present some examples. Here, we also study the utility and the functioning of machine
learning in this kind of system. Finally, we propose a system architecture which embodies all the
concepts discussed so far and introduce its functioning through examples. We end the paper with some
final remarks and ongoing work.

An example study synthesiser

Assume that we wish a synthesiser which is able to produce human voice-like sounds. It is
worth mentioning that to produce a perfect simulation of the human vocal tract is out of the scope of
this paper. Thus, rather than making a description of the fundamental aspects of the phenomenon by
means of a set of equations (e.g. (Woodhouse, 1992; Keefe, 1992)), we opted for observing it by means
of a more traditional formant modelling technique which uses subtractive synthesis (Flanagan, 1984;
Klatt, 1990; Sundberg, 1991; Miranda, 1992; 1993). We come to believe that this level of description
(see also (Eckel, 1993) for a brief discussion about this business) suffices at this moment. The signal
processing diagram of our example study synthesiser is shown in Figure 1.

Each block of the diagram (except the Envelope) is composed of several signal processing
units (SPU). A composition of SPU's form sub-blocks within a block. Sub-blocks in turn may
constitute sub-sub-blocks, and so forth. The Voicing Source, for example, has two sub-blocks: one, the
Vibrato sub-block, contains an oscillator unit, and the other, the Pulse Generator sub-block, contains a
puise generator unit (Figure 2).

Each SPU needs parameter values for functioning. We say that, in order to produce a certain

I T N IS T ol > & P

| Simpésio Brasileiro de Computacio e Musica

205

Figure 1 The example study architecture.

Excitation
Hoise Source
Resonator

1

Y
>

Formant
> Envelope |-
Voicing Source Resonators
A
B '
Figure 2: The voicing source block.
rate wdth f0
A4
SPU —

/
SPY SPU
Yo 1L
o9

Vibrato

Pulse
Generator

\-4

Voicing Source

Describing sound by means of their attributes

There have been several studies defining a framework to systematically describe sounds by
means of their attributes ((Schaeffer, 1966; von Bismark, 1971; 1974a; 1974b; Cogan, 1984; Giomi &
Ligabue, 1992; Carpenter, 1990; Terhardt, 1974) to cite but a few). They are derived mainly from
work in the ficlds of both psychoacoustics and musical analysis. We classify these studies in two
approaches: on the one hand, the device-orientated approach and, on the other hand, the perceprually-
2riejztated approach. As it is not our aim to survey all these, we have selected one example of a

206 X1V Congresso da Sociedade Brasileira de Computacio

I Simpésio Brasileiro de Computagio e Mdsica

207

The source-filter model: a device-orientated approach

\ ilter 2 C isti d is determined by its
The source-filter model formulates that the charactt_arxstlg of a soun

spectrum envelope's pattern. This pattern is composed of multiple hills called formants. Each formant
has a centre frequency peak and a bandwidth. According to this model, the lowest two formants are

+ sionificant determinants of sound quality. o
the mos Tk%g pattern of the spectrum envelope of formant frequencies 18 thought of as the result of a
lex filter through which a source sound passes. .

comp We can define here a two-dimensional space whose axes are the f_lrst (£(1)) and the second
(£(2)) centre formant frequencies respectively. ‘Then, four perceptual att_r{butes, namcl)_/ openness,
acuteness, smallness, and laxness (after Slawson, 1985; 1987, can be specified as cgltegprxes of equal-
values contours in this space. The attribute openness varies with f(l)_, acuteness wx.(h £(2), smallness
with the sum of f(1) + £(2), and laxness varies towards a neutral position in the middle of the space

(Figure 3).

Figure 3: Two-dimensional sound space.

(+))
g N
72

2

{b]

{a] = openness

[b] = acuteness
{c] = smallness
[d] = laxness

The notion of Abstract Seund Schema(ASS)

£ i C i designed for describing a
The Abstract Sound Schema (ASS) is the representation scheme we demgzx‘e :
o wponents and the relations between them. The ASS scheme is

sound in terms of its perceptual con .
constituted of: nodes, slots, and links. Nodes and slots are the components, and the links correspond to

the relations between them. The links are labelled.) . »
The ASS is, in fact, a tree-like abstract data structure whose ultimate nodes (the leaves) are
! ¢ is datum,
slots. Each slot has a name and accommodates a sound synthesis datum. " .
Slots are grouped bottom up into higher level nodes, which in tum are grouped into higher

Yt e AN

Figure 4: The ASS representation scheme.

Implementing a sound event by means of the schema

We have seen before (Figure 1) that the synthesiser is composed of several connected blocks
(Voicing Source, Noise Source, etc.), one of each responsibie for a certain sound attribute. We can
now define a compound sound event by means of the ASS scheme. Each component of the sound
event is responsible for a certain aspect of the sound quality.

The leaves of the sound event are slots corresponding to the several sound synthesis
parameters. Slots are grouped into nodes of a higher level layer, which in turn are grouped into nodes
of a higher level, and so forth, up to the root of the tree (the sound event).

Figure 5 shows a partial definition of a sound event of the synthesiser shown in Figure 1.
Although not shown in this figure, the links among the sound-event's components are labelled
has_component. They represent the offspring relation among nodes.

The partial sound event definition shown in Figure 5 can be implemented in Prolog as shown
below. Each clause represents a has_component relationship between two atoms. The first clause, for
example, is read: ‘a sound event has a component called voicing source’. A interpretation of the whole
layer 1, for example, is: 'the sound event has two components named voicing source and formant
resonators’. .

% % %o layer 1

%o Yo Yo

has_component{ sound_event, voicing_source).
has_component{ sound_event, formant_resonators).
9o Yo Yo

%o % %o layer 2

Yo Yo %o

has_component(voicing_source, vibrato).
has_component(voicing_source, pulse_generator).
has_component(formant_resonators, formant(1}).
has_component(formant_resonators, formant(2)).
has_component(formant_resonators, formant(3)).

Yo Yo %o

% % % layer 3

Yo Yo %o .
has_component(vibrato, rate). % vibrato rate
has_component(vibrato, wdth). % vibrato width
has_component(pulse_generator, £(0)). % fundamental frequency

has_component(formant(1), £(1)).
has_component(formant(1), bw(1)).
has_component(formant(2), f(2)).
has_component(formant(2), b(w2)).
has_component{ formant(3), (3}).
has_component(formant(3), bw(3)).

% 1st formant frequency
% 1st formant bandwidth
% 2nd formant frequency
% 2nd formant bandwidth
% 3rd formant frequency
% 3rd formant bandwidth

208 XIV Congresso da Sociedade Brasileira de Computacio | Simpésio Brasileiro de Computacio e Miisica 209

Figure 5: Partial sound event definition.

sound event

voicing formant
source resonators
vibrato puise formant formant formant
generator 1 2 3
rate wdth 0 f1 bwil 2 bw2 & bwd

All the slots of the ASS must be filled in order to completely specify a sound. We say that a
completely specified sound is an assemblage. For each different sound there is a particular
assemblage. Thinking of this synthesiser as a (rough) model of the vocal tract mechanism, an

assemblage would correspond to a certain position of the vocal tract in order to produce a sound.
Sound hierarchy and the inheritance mechanism

Recapitulating, we have defined a general abstract scheme for representing a sound. Then we
defined and implemented the notion of the sound event by means of this scheme. We also introduced
the idea of assemblage. It was explained that an assemblage occurs when all the slots of the scheme
are properly filled. In this case, each assemblage corresponds to a particular sound.

In practice, sounds are represented in a knowledge base as a collection of siot values. In other
words, the knowledge for the assemblage of a particular sound is clustered around a collection of slot
values. An assemblage engine is then responsible for taking the appropriate slot values and
'assembling' the desired sound.

The following Prolog facts correspond to an example knowledge base which contains siot
values for the (partial) sound event definition shown in Figure 5. Kach clause represents a sloz. It has
two atoms: the first is a reference name and the second is a tuple. The reference name is an atom
which identifies the affiliation of the slot, i.c. which cluster it belongs to. The first element of the tuple
is the name of the slot and the second element is the value of the slot. This value can be either a
number, a word, or a formula for calculating its value (these will be dealt later). This example
knowledge base contains information about three sounds, namely back vowel, front vowel, and vowel
/a/.

% %% back vowel

Yo Yo Yo

slot(vowel(back), [rate, 5.2 1).
slot{ vowel(back), [wdth, 0.06]).
stot(vowel(back), [£(0), 155.561).
slot(vowel(back), [(1), 622.251).
slot(vowel(back), [f(2), 1244.51).
slot(vowel(back), [£(3),2637 }).
slot(vowel(back), [bw(L), 74.65])
slot(vowel(back), [bw(2),561).
slot(vowel{back), [bw(3), 131.85]).
Do Yo %o

% % % front vowel

%o % %o

slot(vowel(front), [rate,5.57).
slot(vowel(front), [wdth, 0.06 J).

L e e\

slot(vowel{front), [£(1), 559.371).
slot(vowel,front), [£(2), 1108.7]).
slot(vowel{front}, [£(3),26371]).
slot(vowel(front), { bw(1),7831).
slot(vowel(front), [bw(2),110.81).
slot(vowel(front), [bw(3),131.851).
% %o Yo

% % % vowel /al

Do Yo Yo

slot(vowel(a), | a_kind_of, vowel(back)).
slot(vowel(a), [£(0), 103.831).

Note that the representation of the sound vowel(a) is different from the other two: it is
incomplete (i.e. there are no slot values for the vibrato nor for the formant resonators). On the other
hand, there is new information in it. The new information, called a_kind_of, is not a simple sound
event slot, as it might appear to be, but it is a link (see Figure 6). This is a link which associates one
collection of slots with other collection of slots.

The link a_kind_of allows a hierarchical organisation of the knowledge. The ability to
represent the relationship between slot collections hierarchically is useful for inheritance relation.
Inheritance is a relation by which an individual assumes the properties of its class and by which
properties of a class are passed on to its subclass. Thus, when a slot collection for a sound is attached
to another slot collection at a higher level, the former inherits properties of the latter. The first fact of
the third cluster of slots listed above states that a vowel(a) is a_kind_of vowel(back). This is to say
that slots not defined for vowel(a) will be filled with slot values taken from vowel(back) (Figure 6). In
practice, the assembler engine has to 'know' that the missing slots in one level are inherited from a
higher level.

Figure 6: The example knowledge base has information about three
sounds. Each sound is represented as a collection of slot values.
Note that vowel(a) inherits slots from vowel(back).

[e O
vowel(front) vowel (back)

slot collection slot collection

e Ly

A

a kind of

vowel(a)
slot collection
—

o "
knowledge base

The notion of partial assemblage

We ought to make the assembler engine flexible so that it also may assemble single internal
nodes of the schema. In other words, besides the assemblage of the whole scheme there might be
{nartial} aceamhblaagere of onlv certain nodes

210 XIV Congresso da Sociedade Brasileira de Computacio

Let us observe again the example shown in Figure 5. It has a branch of filters which
constitute three formant resonators, Taking as an example only the node formant(1) , we say that it
needs only its affiliated slots (namely £(1) and bw(1)) for assemblage.

The advantage of being able to think in terms of assemblages of single nodes, as an aiternative
10 the solely ASS root asscmblage, is that now one can attach non-numerical attribute values (i.c.
words in English) to partial assemblages too. For instance, one could refer to the node formant(1) as
Tow and wide if it has f(1) = 250 Hz and bw(1) = 200 Hz. This is also represented in the knowledge
base as a cluster of slots. Example:

slot([formant(1), low_and_wide], { f(1), 250]).
slot({ formant(1), low_and_wide], [bw(1), 200]).

Now, for each node of the schema one can define a set of possible non-numerical attribute
values. Back to figure 5, the slots rate, and wdth constitute a node called vibrato which in turn, with
the node pulse generator, forms the higher level node voicing source. One could establish here that
the possible attribute values for vibrato are none, uniform, and too slow. Each of these attributes will
then correspond to either a numerical vatue or to a range of values within a certain interval. For
example, one could say that vibrato is none if rate = ¢ Hz, and wdth = ¢ %. The node voicing source
could be similarly defined: one could establish that voicing source is steady low if vibrato = none and
pulse generator = 55 Hz, for example.

Hypothetically considering only this left part of the example schema shown in Figure 4, a
sound, say sound(a), could be described as having steady low voicing source and none vibrato. See
example below:

slot([vibrato, none },[rate,01).

slot([vibrato, none 1,{ wdth,01]).

slot([voicing_source, steady_low], [vibrato, none }).
slot([voicing_source, steady_low], | pulse_generator, 55]).
slot([sound(a), [voicing_source, steady_low }),

slot([sound(a), [vibrato, none }).

The role of machine learning

In this section we will study the role played by two machine learning techniques in our
proposed system, namely inductive learning and supervised deductive learning. Both are well known
techniques which have been satisfactorily used in expert systems (see (Dietterich and Michalski, 1981;
Quinlan, 1982; Winston, 1984; Bratko, 1990; Carbonell, 1990) for a survey).

The target of inductive learning here is to induce general concept descriptions of sounds from
a set of examples. A further aim is to allow the computer to use automatically induced concept
descriptions in order to identify unknown sounds or possibly suggest missing attributes of an
incomplete sound description. Our main reason for inducing rules about sounds is that the computer
can then aid the user to explore among possible alternatives during the design a certain sound. Here
the user would be able to ask the system to 'play something that sounds similar to a bell’ or even ‘play
a kind of dull sound', for example. In these cases the system will consult induced rules in order to
work out which attributes are relevant for synthesising a bell-like sound or a sound with dull colour
attribute (Smaill et al. 1993).

An example rale, when looking for a description for, say sound(c), on the basis of some
examples, could be as follows:

sound(c) = { [vibrato = fast], [openness =high } }
The interpretation of the above rule is as follows:

A sound is sound(c) if:
it has fast vibrato and
high openness.

No matter how many attributes sound(c) had in the training set, according to the above rule,
the most relevant attributes for this sound are vibrato = normal and openness = high. 'Most relevant’
here means what is most important for distinguishing sound(c) form other sounds of the input training
set. In this case, if the system is asked to synthesise a sound with fast vibrato and high openness,
than 1f will neadnee eonnd(c)

| Simpésio Brasileiro de Computacdo e Musica

211

The target of supervised deductive learning in our system is to altow the computer to update
its knowledge about attribute values throughout user interaction. We remind the reader the fact that the
input requirement for producing a sound can contain either or both: attribute values (e.g. vibrato =
none) or slot values (e.g. f(0) = 55 Hz). The aim of supervised deductive learning here is at allowing
the computer to infer whether or not input slot values (in a requirement) match with known attribute
values. If there is no matching, then the system automatically adds this yet unknown information to
the knowledge base and asks the user to give a name for this novel deduced attribute value. Suppose
that the system knows three values for the attribute vibrato:

vibrato = uniform if { rate = 5.2 Hz, wdth=3 % }
vibrato = too slow if { rate =3.6 Hz, wdth=3 % }
vibrato = none if { rate = 0 Hz, wdth=0 % }

If the user requites a sound with (vibrato) rate = 12 Hz, for example, then the system will
synthesise it and deduce that there is no attribute value for vibrato in the knowledge base whose rate is
equal 12 Hz. In this case the system adds this new information to the knowledge base, works out the
other slot values needed to create this new attribute value, and ask the user to name it. Let us say, for
example, that the user wishes to call it tremolo. Eventually the system will add the following
information in its knowledge base:

vibrato = tremolo if { rate=12 Hz, wdth=3 % }

Towards a system architecture

User configuration is one of the desirable capabilities of this system. Therefore rather than
providing a closed architecture which reflects both a particular synthesiser and a particular vocabulary
for sound description, we propose an architecture which provides open-ended modules (Figure 7).

This system architecture provides means for handling information about sound synthesis but it
remains open-ended regarding what the information is about.

Engines and services provided by the system

The role of the assembler engine and the functioning of the machine learning engine modules
have already been introduced.

The machine learning engine module performs the two kinds of learning: inductive learning
and supervised deductive learning, just discussed above. The training set for the inductive learning
mechanism is given either by the user or it is automatically produced by the system by consulting its
own knowledge base. The input for the supervised deductive Jearning mechanism is provided partly by
the system and partly by the user.

The user interface modale provides means for communicating with the system. Here the user
can activate the assembler engine in order to produce a sound, consult the status of the system (such as
the content of the induced rules module and the content of the knowledge base moduie), and input any
external information the system might need (such as the names for new sounds and attributes, and
training sets).

Information internally generated and administered by the system

The inductive rules module holds the information internally generated by the system as the
result of the inductive learning. As its name suggests this module contains rules which were induced
by the machine learning engine module.

User specified modules

These are the open-ended modules. They define the domain of the system, that is, the sonic
world the system will deal with. Here the user implements the instrument (i.c. the synthesis algorithm),
the schema on the top of it, the knowledge base whose information is used to 'play’ it, a dictionary of
slot values, and a theory for the instrument, using Prolog (Bratko, 1990).

212 XIV Congresso da Sociedade Brasileira de Computacao

Figure 7: The proposed system architecture.

knowledge |msew schema
base
i
n
3
dictionary t
r
u
m
) B ER [
n
1
theory

The modules of the architecture are classified in three groups:

D User specified modules

Information automatically generated by the system

Engines and services provided by the system

Default libraries of such modules can be provided in case the user does not wish start from
scratch, However, as these modules are to be user customised, it may not always be very useful to
exchange highly customised libraries with other users.

Firstly, the user specifies the instrument module. This can be done by means of any suitable
SWSS (Software for Sound Synthesis) package, such as CLM, (Schotstaedt, 1992), Csound (Vercoe,
1991), Mosaic (Morrison and Waxman, 1991), or ISPW Max (Puckette et al,, 1992), to name but a
few. Having specified the instrument then the user implements the schema on the top of it. Secondly,
the knowledge base module is specified. In this module the uscr creates clusters of stot values. As it
was mentioned before, each cluster cortesponds to an instantation of either a whole sound event or an
internal node of the schema, i.¢. a sound attribute. Thirdly, the user builds the dictionary module. In
this module the user specifies the meaning of the vocabulary for speaking about slots, i.e. about cach
parameter of the instrument. Each word of the vocabulary for slots may mean either a numerical
synthesis parameter Of & pointer to a formula for calculating it. Finally, the user specifies a theory for
the instrument. A theory is a set of formulas for calculating slot values. These formulas can calculate
values either based on other siot values or by the random choice of a value within a certain interval.

As the system is to start with a certain body of knowledge which will be expanded through
user interaction, these specifications do not need to be exhaustive.

| Simpésio Brasileiro de Computacio e Miisica

213

An example functioning

Let us study an example functioning of the architecture explai
L (. plained above. Assume th:
following information can be used in order to assemble the scheme of Figure 5. athe

Knowledge base module;

slot(sound_event(sound(c)), [rate, fast}).

slot{ sound_event(sound(c)), [wdth, default]).
slot{ sound_event(sound(c)), [£(0), low]).

slot(sound_event(sound(c)), { openness, high]).
slot(sound_event(sound(c)), [acuteness, low).
slot(sound_event(sound(c)), [£(3), 2637 1).

slot(sound_event(sound{(c)), [bw(3), 131.85]).

slot(attribute([openness, low 1), [£(1), low]).
slot(attribute([openness, low 1), [bw(1), 74.65).

slot(attribute([openness, high 1), [f(1), high 1).
slot(attribute([openness, high 1),{ bw(1), 783 1).

slot(attribute([acuteness, low 1), { f(2), low }).
slot{ attribute([acuteness, low 1),{ bw(2),110.81).

ete.

Dictionary module:

dict{ slot(£(1)), [value(low, 290),
value(medium, 400),
value(high, 650)1).
dict(slot(£(2)), [value(low, 1028),
value(medium, 1700),
value(high, 1870)1).
dict(slot(£(0)), value(low, 220), .

value(medium, rule(£(0), medium))
value(high, rule(£(0), high))1).
etc.

Theory module:
instrument_theory(rule(£(0), medium), FO):-
get_value(f(0), low, V),
FOisV*2,
etc.
. Suppose that a training set has been input and the system has already induced some rules, such
s ’
sound(a) = { [openness = low } }
sound(b) = { { £(0) = medium] }
sound(c) = { [rate = fast |, [f(0) =low] }
ete
Now, let us suppose two hypothetical queries and examine what ARTIST would do in order to
compute them.

214 XIV Congresso da Sociedade Brasileira de Computacio

Example query 1:
Produce a sound with fast vibrato rate and low pitch.
ARTIST functioning 1:
Firstly, the system consults the induced rules in order to find out if it knows any
sound whose most prominent features are rate = fast and f(0) = low. Inthis case, there is a
rule which tells that sound(c) matches this requirement. Thus, sound(c) will be produced.

Before assembling the schema, the system consults the dictionary in order to compute the
slots whose values are represented by aword (e.g. f(0) = low actually means 220 Hz).

Example query 2:
Produce a sound with medium pitch and high openness.

ARTIST functioning 2;

In this case the system has no matching induced rules. Thus, this sound will be
created from scratch. The system consults the dictionary in order to compute the values of
f(0) = medium and f(I) = high, and automatically completes the missing slot data with
default values. Note that instead of a value for f(0) = medium, the dictionary points to a rule.
In this case, the system consults the theory module in order to calculate it. The theory says
that this value corresponds to the double value of f(0) = low. Therefore, f(0) = medium here
means 440 Hz. The sound is then produced, the user is asked to name it, and a novel cluster
of slot values is automatically created in the knowledge base for representing it.

Conclusion and further work

In this paper we introduced the fundamentals of ARTIST: a tool for the design of intelligent
assitants for sound synthesis.

ARTIST is provided with some degree of automated reasoning which supports the laborious
and tedious task of writing down number sequences for generating a single sound on a computer. A
'synthesiser’ implemented by means of ARTIST is provided with a certain knowledge about sound
synthesis and it is able to infer the necessary parameters values for a sound from a quasi-natural
language sound description.

Although the user has to specify the information of the knowledge base (i.e. the synthesis
algorithm(s) and the vocabulary for sound description) beforehand, this does not necessatily need to be
exhaustive. The system is to begin with a minimum amount of information about certain sounds and
attributes, but it is able to automatically expand the scope of its knowledge by acquiring new
information through user interaction.

At the moment we are developing a higher level interface for the user specified modules. We
wish to enable the user to specify these modules by means of natural language-like statements, instead
of Prolog. We aiso plan to devise a visual interface for the specification of some attributes, such as
envelopes, for example.

ARTIST is being tested using synthesis by physical modelling technique (Roads, 1993). It
seems that this technique matches many of the concepts developed in this paper, such as the
representation of sound atuributes and the mapping of these to synthesis parameters.

We are aware that ARTIST is still in its infancy. For the moment we regard it as a suggestive
and plagsible starting point only.

References

Barritre, J-B. (1989), Computer music as cognitive approach: Simulation, timbre and formal processes, in
Contemporary Music Review, Vol. 4, pp. 117-130, Harwood Academic Publishers.

Bratko, 1. (1990), Prolog programming for Artificial Intelligence, Addison-Wesley Publibshers.

Carbonell, J. (1990) (Editor.), Machine Learning: paradigms and methods, The MIT Press.

Carpenter, R. H. S. (1990), Neurophysiology, Physiological Principles of Medicine Series, Edward Arnold.

Cogan, R. (1984), New Images of Musical Sound, Harvard University Press.

_and Jerse T. (1985), Computer Music, Schirmer Books.

e L 10%1Y Tnductive Learning of Structural Descriptions, in Artificial Intelligence,

| Simpésio Brasileiro de Computacio e Musica

215

Eckel, G. (1993), La Maitre de la Synthese Sonore, in La Synthése Sonore, Les cahiers de 1Trcam Nr. 2, pp. 97-
106, Ircam - Centre Georges Pompidou.

Ethington, J. and Punch, D. (1994), SeaWave: A system for Musical Timbre Description, in Computer Music
Journal, Vol. 18, Nr. 1, pp. 30-39, The MIT Press.

Flanagan, F. (1984), Voices of Men and Machines, in Electronic Speech Synthesis, Bristow, G. (Editor.),
Granada.

Garton, B. (1989), The Elthar Program, in Perspectives of New Music, Vol. 27, Nr. 1, pp. 6-41.

Giomi, F. and Ligabue, M. (1992), Analisi Assistita al Calcolatore della Musica Contemporanea, Rapporto
Interno C92-01, CNUCE/CNR, Conservatorio di Musica L. Cherubini (Italy).

Helmholtz, H. L. F. (1885), On the sensations of tone as a physiological basis for the theory of music, Longmans,
Green and Co.

Holtzman, S. R. (1978), A description of an automated digital sound synthesis instrument, DAI Research Report
No. 59, Dept. of Al, University of Edinburgh.

Klatt, D. H. (1980), Software for a cascade/parallel formant synthesiser, in Journal of Acoustic Society of
America, Vol. 67, Nr. 3, pp. 971-995.

Keefe, D. H. (1992), Physical Modeling of Wind Instruments, in Computer Music Journal, Vol. 16, Nr. 4, pp. 57-
73, The MIT Press.

Lerdhal, F. (1987), Timbral Hierarchies, in Contemporary Music Review, Vol. 2, pp. 135-160, Harwood
Academic Pulbishers.

Lohner, H. (1986), The UPIC System: A User's Report, in Computer Music Journal, Vol. 10, Nx. 4, pp. 42-49,
The MIT Press.

Luger, G. F. and Stubblefield, W. A. (1989), Artificial Intelligence and the design of Expert Systems,
Benjamin/Cumimings.

Marino, G., Serra, M-I, and Raczinski, J-M. (1993), The UPIC System: Origins and Innovations, in
Perspectives of New Music, Vol. 31, Nr. 1, pp. 258-269.

Miranda, E. R., Smaill, A., and Nelson, P. (1993a), A Symbolic Approach for the design of Intelligent Musical
Synthesisers, in Proceedsing of the X Reuni6n Nacional de Inteligencia Artificial in Mexico City,
Megabyte/Noriega Editores.

Miranda, E. R., Smaill, A., and Nelson, P. (1993b), A Knowledge-based approach for the design of Intelligenct
Musical Instruments, in Proceedings of the X Sympésio Brasileiro de Inteligéncia Artificial in Porto
Alegre, pp. 181-196, SBC/UFRGS.

Miranda, E. R. (1992), Towards an Acousmatic Singer, Research Report Nr. 1, Faculty of Music, University of
Edinburgh.

Miranda, E. R. (1993), Modelagem do Aparelho Fonador ¢ suas AplicacGes na Musica, in Acstica & Vibragdes,
Yournal of the Acoustic Society of Brazil (SOBRAC), Nr. 12, pp. 60-74.

Miranda, E. R. (1994a), From Symbols to Sound: Artificial Intelligence Investigation of Sound Synthesis, in
Contemporary Music Review (in press), Harwood Academic Publishers.

Miranda, E. R. (1994b), The Role of Autificial Intelligence in Computer-aided Sound Composition, in Journal of
Flectroacoustic Music (in press), Sonic Arts Network. '

Miranda, E. R. (1994c), Towards an Intelligent Assistant for Sound Design, in Musical Praxis, Vol. 1, Nr. 1, pp.
53-57, Faculty of Music, Edinburgh University.

Morrison, J. and Waxman, D. (1991), Mosaic 3.0 Reference Manual, frcam.

Pennycook, B. W. (1985), Computer-Music interfaces: A Survey, in Computing Surveys, Vol. 17, Nr. 2, pp. 267-
289.

Puckette, M., Lippe, C., and Waxman, D. (1992), ISPW Max Reference Manual, Preliminary Release 0.17,
Trcam.

Roads, C. (1993), Initiation a la Synthése par Modgles Physiques, in La Synthese Sonore, Les cahiers de Trcam
Nr. 2, pp. 145-172, Ircam - Centre Georges Pompidou.

Quinlan, J. R. (1982), Semi-autonomous Acquisition of Pattern-based Knowledge, in Introductory Reading in
Expert Systems, Michie, D. (Editor), Gordon&Breach.

Schaeffer, P. (1966), Traité des objets musicaux, Ed. du Seuil.

Schmidt, B. L. (1987), Natural Language Interface and their application to Music Systems, in Proceedings of the
5th Audio Engineeting Society International Conference, pp. 198-206.

Schottstaedt, W. (1992), Commeon Lisp Music Documentation, available via Internet ftp from the clin directory on
the host machine ccrma-ftp.Stanford.edu.

Slawson, W. (1985), Sound Color, University of California Press.

Slawson, W. (1987), Sound-color Dynarmics, in Perspectives of New Music, Vol. 25, No. 1&2, pp. 156-179.

Smaill, A., Wiggins, G. A,, Miranda, E. R. (1994), Music Representation - between the Musician and the
Computer, in Music Education.: An Artificial Intelligence Approach, Smith, M. et al. (Editors.),
Workshops in Computing Series, Springer-Verlag, pp. 108-119.

Spender, N. (1980), Psychology of music (I-II), in The New Grove's Dictionary of Music and Musicians, Sadie,
S. (Editor), Vol. 15, pp. 388-427, Macmillan Publishers,

Sundberg, J. (1991), Synthesising Singing, in Representation of Musical Signals, De Poli et al. (Editors), The
MIT Press.

Terhardt, B. (1974), On the Perception of Periodic Sound Fluctuation (Roughness), in Acustica, Vol. 30, pp.
201-213.

<r g apr s Totoinot fio from the music directory on the host machine

216

XIV Congresso da Sociedade Brasileira de Computacio

Vertegal, R. and Bonis, E. (1994), ISEE: An Intuitive Sound Editing Environment, in Computer Music Journal,
Vol. 18, Nr. 2, The MIT Press.

von Bismark, G. (1971), Timbre of Steady Sounds: Scaling of Sharpness, in Proceedings of the 7th Internacional
Congress on Acoustics in Budapest, Vol. 3, pp. 637-640.

von Bismark, G. (1974a), Timbre of Steady Sounds: A Factorial Investigation of its Verbal Attributes, in
Acustica, Vol. 30, pp. 146-158.

von Bismark, G. (1974b), Sharpness as an Attribute of the Timbre of Steady Sounds, in Acustica, Vol. 30, pp.
159-172.

Winston, P. (1984), Artificial Intelligence, (2nd ed.), Addison-Wesley.

Woodhouse, J. (1992), Physical Modeling of Bowed Strings, in Computer Music Journal, Vol. 16, Nr. 4, pp. 43-
56, The MIT Press.

Xenakis, 1. (1963), Musiques Formelles, in La Revue Musicalle, double issue Nrs. 253-254, Editions Richard-
Masse.

Xenakis, I. (1971), Formalized Music: Thought and Mathematics in Music Composition, Indiana University
Press.

Xenakis, I (1992), Formalized Music: Thought and Mathematics in Music, Pendragon Press, revised edition.

| Simpésio Brasileiro de Computacio e Misica 217

Representing Musicians' Actions
for Simulating Improvisation in Jazz

Geber Ramalho

LAFORIA-IBP-CNRS
Université Paris VI
4, Place Jussieu
75252 Paris Cedex 05 - FRANCE
Tel. (33-1) 44.27.37.27
Fax. (33-1)44.27.70.00
e-mail: ramalho@laforia.ibp fr

Abstract

This paper considers the problem of simulating Jazz improvisation and
accompaniment. Unlike most current approaches, we try to model the musicians’
behavior by taking into account their experience and how they use it with respect to
the evolving contexts of live performance. To represent this experience we introduce
the notion of Musical Memory, which cxploits the principles of Case-Based
Reasoning (Schank & Ricsbeck 1989). To produce live music using this Musical
Memory we propose a problem solving method based on the notion of PACTs
(Potential ACTions) (Ramalho & Ganascia 1994b). These PACTs are a generic
framework for representing the musical actions that are activated according to the
context and then combined in order to produce notes.

1 - Introduction

This paper considers the problem of simulating the behavior of a bass player in the context of Jazz live
performance. We have chosen to work on Jazz improvisation and accompaniment because of their spontaneity, in
contrast to the formal aesthetic of contemporary classical music composition. From an Al point of view,
modeling Jazz performance raises interesting problems since performance requires both theoretical knowledge and
_great skill. In addition, Jazz musicians arc encouraged to develop their musical abilities by listening and
practicing rather than studying in conservatoires (Baker 1980).

In Section 2 we present briefly the problems of modeling musical creativity in Jazz performance. We show
the relevance of taking into account the facl that musicians integrate rules and memories dynamically according
to the context. In Section 3 we introduce the notion of PACTs, the basic element of our model. In Section 4, we
give a general description of our model and show particularly how the composition module integrates the two
above-mentioned notions to create music. In the last section we discuss our current work and directions for
~further developments.

2 - Modeling Musical Creativity
2.1 - The Problem and the Current Approaches

The tasks of improvisation and accompaniment consist in playing notes (melodies and/or chords) according
1o guidelines laid down in a given chord grid (sequence of chords underlying the song). Musicians cannot justify
all the local choices they make (typically at note-level) even if they have consciously applied some strategies in
the performance. This is the greatest problem of modeling the knowledge used to fill the large gap referred to
above (Ramalho & Pachet 1994). To face this problem, the first approach is to make random-oriented choices
from a library of musical patterns weighted according o their frequency of use (Ames & Domino 1992). The
second approach focuses on very detailed descriptions so as to obtain a complete explanation of musical choices
in terms of rules or grammars (Steedman 1984). Regardless of its musical results, the random-based approach

218 XIV Congresso da Sociedade Brasileira de Computaciq

cannot provide an accurate understanding of musical knowledge, singe no explicit semantics is assqcila.ted to
randomness. On the other hand, the deterministic framework of the nglg—based approach lac’}(s of flexxbxhly for
modeling musical creativity. This crucial trade-off between “flexibility apd randomness” and “control and
semantics” affects the modeling of other creative activities too (Rowe & Partridge 1993).

2.2 - Claims on Knowledge and Reasoning in Jazz Performance

Our first claim is that Jazz musicians' activitics are supported by two main knowledge s[ructgres: memories and
rules. Tazz musicians use rules they have learned in schools and through Jazz methods (Baud01n_1990}. However,
these rules do not embody all knowledge. In fact, despite the availability of some ruleg for mampul.at_mg abstract
concepts such as tension, style, swing, contour, density, contrast, ete., there is no lo_gxcal rule chaining that can
directly and uniquely instantiate these concepts in terms of notes. This phenomenon is a consequence of the Jazz
learning process which involves listening to and imitating performancgs of grf:at Jagz stars (Ba}wr 1980).

To put it in a nutshell, musicians integrate rules and memories into their actions dynamically (Ramatho &
Ganascia 1994a). Sometimes, the notes can be determined from their most abstrac% conccpys by means of'rules
but, very often, these rules are not available. In these cases a fast search for appropriate musical fragments in the
musician's auditory memory is carried out. This memory search is both flexible and conlrolled. because of the
mechanism of partial matching between the memory contents and requirelmems stated the‘fxva}lgl).le,’rules and
concepts. In terms of modeling, this is an alternative approach that avoids the need for artificial” rules or
randomness.)

Our second claim is that musical actions depend strongly on contexts that evolve over time. The great
interaction between either musicians themselves or musicians and the public/environment may lead them to
reinforce or discard their initial strategies while performing. The constraints imposed by real-time performance
force musicians to express their knowledge as a fast response 10 on- going events rather than as an accurate search
for “the best musical response”. Jazz creativity occurs within the continuous confrontation between the
musician's background knowledge and the context of live performance.

3 . PACTSs: the Basic Notion of our Model

3.1 - Introduction

Pachet (Pachet 1990) has proposed the notion of PACTs (Potential ACTions) as a generic framewgrk for
representing the potential actions that musicians may take within the context of p@{formance, Focusing the -
modeling on musical actions rather than on the syntactic dimension of notes, additional kn(?wledge can be
expressed. In fact, PACTs can represent not only notes but also incomple_te and abstract actions, as well as
action chaining. It is this homogeneous representation of both notes and their related abstract concepts PACTs
that allows the integration of analytic (rule-based) and analogical (case-based) reasoning. . '

More precisely, PACTs are frame-like structures whose main attributes are: s_tart-bcat, en@—begt, dimensions,
abstract-level, type and instrument-dependency. PACTSs are activated at a precise moment 1n time and. are of
Limited duration which can correspond 1o a chord, a bar, the entire song, etc. PACTSs may rely on qﬁferem
dimensions of notes: rhythm (r); amplitude (a); pitch (p) and their arrangements. When its dimensions are
instantiated, the abstract level of a PACT is Jow , otherwise it is high. For instance, “play loud”, “play this
rhythm” and “play an ascending arpeggio” are low-level PACTSs on amplitudes., rhymm arzfi pitches respecn’:/ely. ;
“Play this lick transposed one step higher” is a low-level PACT on all three dimensions. Play syncopated” and
“use major scale” are high-level on respectively rhythm and pitches. PACTSs can be of two types: procedural (6.8,
“Play this lick transposed onc step higher”) or declarative (e.g. “play bluesy”). PACT§ rr’uya.y also depend on the.
instrument. For example, “play five-note chord” is a piano PACT whereas “play stepwise” is a bass PACT.

For the sake of simplicity we have not presented many other descriptors that are needed accqrdmg to the
nature and abstract level of the PACTs. For instance, Pitch-PACTs have descriptors such as pltcb-contour
(ascending, descending, etc.), pitch-tessitura (high, low, middle, etc.), pitch-set (triad, major scale, dorian mode;
ete.) and pitch-style (dissonant, chord-based, eLe.).

3.2 - PACTs. as basis of the problem solving method » -
From the above description two important properties of PACTs appear. The first one is the pla)"’ablllt}’“Ofa
PACT, The less abstract 2 PACT is and the more dimensions it relies on, the more itis “playab‘le. (e.g- Plf’tlm)’
ascending notes” is less playable than “play CE G”, “play bluesy” is less playable than “play a dlmlmShedt;lree .
on the second beat”, etc.). A fully playable (or just playable) PACT is defined as a low—le_vcl PACT on all
s e cacond property is the combinability of PACTS, Le. they can be combined to génergf?’ffzgfi

I Simpdsio Brasileiro de Computacio e Msica 219

given context (¢.g. C major) to yield “play C E G”. In this sense, PACTs may or may not be compatible. “Play
loudly” and “play quietly” cannot be combined whereas “swing”, “play major scale” and “play loudly” can.

These properties constitute the basis of our problem solving method (Newell & Simon 1972; Nilsson
1971). Taking an initial statc of a problem space as a time segment (e.g. bars) with no notes, a musical problem
could consist in filling this time segment with notes which satisfy some criteria. This intuitive formulation of
what a musical problem is (Vincinanza & Prictula 1989) has been criticized by many researchers because these
criteria are not determined a priori (Johnson-Laird 1992). However, we present here a different point of view that
atlows us to formalize and deal with musical creativity as problem solving. We claim that the musical problem
is in fact to know how to start from *“vague criteria” and go towards a precise specification of these criteria. In
other words, solving a musical problem consists in assembling (combining) a set of PACTs that have been
activated by the performance context. The goal is fixed and clearly defined (i.e. the goal is to play!).

3.3 - PACTs as the contents of the Musical Memory

There is no guarantee that a set of PACTS contains the necessary information so as to produce a playable PACT.
To solve this problem we have introduced the notion of Musical Memory which explores the principles of case-
based reasoning (Schank & Riesbeck 1989). This Musical Memory is a long term memory that accumulates the
musical material (cases) the musicians have listened to. These cases are represented using PACTSs' framework and
thus can be retrieved and modified during the problem solving to provide missing information.

The cases are obtained by applying transformations (e.g. lime segmentation, projection on one or two
dimensions, etc.) to transcriptions of actual Jazz recordings. This process (so far, guided by a human expert)
yields cases such as melody fragments, rhythm patterns, amplitude contours, chords, etc. The cases are indexed
from various points of view that can have different levels of abstraction such as underlying chords, position
within the song, amplitude, rhythmic and melodic features (Ramalho & Ganascia 94a). These indexes are in fact
the same attributes used to describe activaled PACTs. For instance, pitches are described in terms of contour,
tessitura, set and style as discussed in last section.

Low-level PACTs are PACTs whose attributes are all specialized, i.e. have defined values. Describing a
Musical Memory case in terms of PACTSs correspond to start from note-level attribute to fill in the more abstract
ones. Whereas, in the process of assembling PACTs we starl from abstract descriptions to combine them into
note-level ones. When this latter is not possible, a match between the already specialized attributes and the
PACTs in the Musical memory is performed.

4 Reasoner Short Term Memory)
Knowledge Bas
J
past segment current segment futur ment
@@m@xg ; I g " nt segmen| \: Ire seg ::n \
Chord Grid IEm7(b5) IAT(H9) 1Cm7 I F7 | Fm7 |

External Events (public & environ.) «. ke, ab
Orchestra (Soloist) ++ EEC=—ad g dbal

\ Reasoner (Bass Player) .. JEE ZEES s - Y,

Figure 1 - Overall Description of the Model

4 - General Description of our Model

4.1 - The Reasoner and the Composing Module

What we do is model a musician as a reasoner whose behavior is simulated by three modules which work
coordinately in parallel (see Figure 1). The modules of our model resemble the Monitoring, Planning and
Executing ones of some robotics applications (Ambros-Ingerson & Steel 1988). The context is composed of a
chord grid which is given at the outset and events that occur as the performance goes on, i.e. the notes played by
the orchestra and reasoner and also the public reactions. The perception module “listens to” the context events
and puts them in the Short-Term Memory. The composing module computes the notes (a playable PACT)

220 XIV Congresso da Sociedade Brasileira de Computacgo

Short-Term Memory contents, the reasoner’s mood and the chords of the future chord grid segment. The
reasoner’ s Mood changes according 10 the context events. The execution module works on the current chord grid
scgment by executing the playable PACT previously provided by the composirllg module. This execution
corresponds to the sending of note information at their start time to the perception module and to a MIDI
synthesizer, which gencrates the corresponding sound. . '

The problem of playing along a given chord grid can be viewed as a continuous succession of three sub-
problems: establishing the duration of the new chord grid scgment; determining the PACTs associ_ated 10 this
segment; and assembling this group of PACTs in order to gencrate a unique playable PACT. The first two are
more questions of problem sctting, the third is a matter of problem solving and planning.

The composition model is supported by a Musical Memory and Knowledge Base. The former contains low-
ievel PACTs that can be retrieved during the PACT agsembly. The latter contains production rules and heuristics
concerned with the segmentation of the chord grid, changes in the Mood and the selection/activation of PACTs,
These rules are also used o detect and solve incompatibilitics between PACTSs, to combine PACTSs and o
modify low-level PACTSs retrieved from the Musical Memory.

In next sections we give further details of the composition module. The discussion of perception and the
execution modules is not in the scope of this paper (sce Ramalho & Ganascia 1994b).

4.2 - Segmenting the Chord Grid and Selecting PACTs

The chord grid is segmented in non regular time intervals corresponding to typical chord sequences (1I-V
cadences, modulations, turnarounds, ctc.) abundantly catalogued in Jazz literature (Baudoin 1990). In fact, the
reasoning of musicians docs not progress note by note but by “chunks” of notes (Sloboda 1985). The criteria for
segmenting the chord grid are simple and arc the same as those used for segmenting the transcription of Jazz
recordings in order to build the Musical Mcemory.

Given the chord grid segment, the group of associated PACTs derives (rom three sources. Firstly, PACTs
are activated according Lo the chords of the grid segment (e.g. “if two chords have a long duration and a small
interval distance between them then play an ascending arpeggio”). Other PACTs are activated from the last
context events (¢.g. “if soloist goes in descending dircction then follow him™). The activation of a PACT
corresponds to the assignment of values to its atlributes, i.c. the generation of an instance of the class PACT in
an Object-Oriented Language. Finally, the previously activated PACTs whose life time intersects the time
interval defined by the segmentation (c.g. “during the improvisation play louder") are added to the group of
PACTS obtained from the first two steps.

The reasoner can be scen as an automaton whose state (Mood) changes according to the context events (e.g.
“if no applause after solo then Mood is bluesy” or “if planning is late with respect to the, execution then Mood is
in a hurry"). So far, the reasoner's Mood is characicrized by a simple set of “emotions”. In spite of its
simplicity, the Mood plays a very important role in the activation and assembling of PACTs. It appears in the
left-hand side of some rules for activating PACTs and also has an influence on the heuristics that establish the
choice preferences for the PACT assembly operators. For instance, when the reasoner is “in a hurry” some
incoming context events may not be considered and the planning phase can be bypassed by the activation of
playable PACTs (such as “play this lick") which correspond to the various “default solutions” musicians play.

4.3 - Assembling PACTs

The initial state of the assembly problem space is a group of sclected PACTS corresponding to the future chord
grid segment. The goal is a playable PACT. A new slate can be rcached by the application of three operators or
operator schemata (since they must previously have been instantiated 1o be applied): delete, combine and add. The
choice of operator follows an opportunistic problem solving strategy which seeks the shortest way to reach the
goal. Assembling PACTs is a kind of planning whose space state is composed of potential actions that are
combined both in parallel and sequentially since somctimes they may be seen as constraints and other times as
procedures. Furthermore, the actions arc not restricted o primary ones since potential actions have different
abstract levels. Finally, there is no backiracking in the operator applications.

The delete operator is used 10 solve conflicts between PACTS by eliminating some of them from the group
of PACTSs that constitute the next state of the space problem, For instance, the first two of the PACTs “play
ascending arpeggio”, “play in descending direction”, “play louder” and “play syncopated” are incompatibl'e. As
proposed in SOAR (Laird, Newell & Rosembloom, 1987), heuristics state the preferences for cl}oosxng _a
production rule from a sct of fircable rules. In our example, we climinate the second one because the first one 1S
more plavable.

| Simpdsio Brasileiro de Computacio e Misica 221

The combine operator transforms compatible PACTS into a new one. Sometimes the information contained
in the PACTs can be merged immediately to yicld a low-level PACT on one or more dimensions (e.g. “play
ascending notes” with “play triad notes” yiclds “play C E G in a C major context). Other times, the information
is only placed side by side in the new PACT waiting for future merger (e.g. “play louder” and “play syncopated”
yields, say, “play louder and syncopated”). Combining this with “play ascending arpeggio” generates a playable
PACT.

The add operator supplies the missing information that is nccessary to assemble a playable PACT by
retrieving and adapting adequate cases (low-level PACTSs on one or more dimensions) from the Musical Memory.
The retrieval is done by a partial pattern maiching between case indexes, the chords of the chord grid segment and
the current activated PACTs. Since the concepts used in the indexation of cases correspond to the descriptors of
high-level PACTs, it is possible to retrieve low-level PACTs when only high-level PACTS are activated. For
instance, if the PACTs “play bluesy” and “play a lot of noles” are activated in the context of "Bb7-E7" chords,
we search for a case that has been indexed as having a bluesy style, a lot of notes and IV7-17 as underlying
chords. When there is no PACT on a particular dimension, we search for a case that has “default” as a descriptor
of this dimension. For instance, it is possible to retricve a melody even when the activated PACTSs concern
amplitudes only.

The cases may correspond to some “chunks” of the note dimensions that may not fit in the “gaps” that exist
in the current activatcd PACTS, Thus, retricved cascs may carry additional information which can be partially
incompatible with the activated PACTs. Here cither the conflicting information is ignored or it can “short-
circuit” the current PACT assembly and lead to a different playable PACT. Let us suppose that the activated
PACTSs concern pitches and amplitudes and the retricved case concerns pitches and rhythm, Only the activated
PACTSs on amplitude can be considered to be combined with the retrieved case gencrating a playable PACT. But,
if the retrieved case concerns thythm and amplitudes, perhaps the latter information could be ignored.

Choosing the add operator balances the cost in terms of memory search time with the possibility of short-
circuiting the assembly process. Short-circuiting is an important feature of music creativity, For instance, in
melody composition there is no chronological ordering between rhythm and pitches (Sloboda 1985). Sometimes
both occur together! This feature is often neglected by computational formalisms (Vincinaza & Prietula 1989).

5 - Discussion

We have shown how an extension o classical problem solving could simulate some features of musical
creativity. This extension attempts to incorporate both the cxpericnce musicians accumulate by practicing and
the interference of the context in the musicians’ ongoing rcasoning. Although we do not use randomness in our
model, there is no predetermined path to generate music. The musical result is constructed gradually by the
interaction between the PACTs activated by the context and the Musical Mcmory's resources.

The notion of PACTs was first implemented (Pachet 1990) for the problem of generating live bass line and
piano voicing. At this time, results were encouraging but, exploring exclusively a rule-based approach, various
configurations of PACTs were hardly treated, if at all. This was due to the difficulty of expressing all musical
choices in terms of rules. Our work has concentrated on improving the formalization of PACTs within a
problem solving perspective. We have also introduced the notion of Musical Memory and seen how it can be
coupled with PACTs. Today, Pachet's system is being reconsidered and re-implemented using a Smalltalk
platform to take into account both the Musical Memory and a wider repertoire of PACTs.

Acknowledgments

I'would like to thank Vincent Corruble, Jean-Gabricl Ganascia, Frangois Pachet and Jean-Daniel Zucker, from
LAFORIA team, for the continuous encouragement and technical support. This work has been partly supported
by a grant from the Brazilian Education Ministry - CAPES/MEC.

References

Ambros-Ingerson, J. & Steel, S. (1988). Integrating Planning, Execution and Monitoring, In Proceedings of the
Sixth National Conference on Artificial Intelligence, 83-88, AAAI Press.

Ames, C. & Domino, M. (1992). Cybernetic Composer: an overview, In M, Balaban, Ebicioglu K. & Laske,
O. eds., Understanding Music with Al: Perspectives on Music Cognition, The AAAI Press, California,

Baker, M. (1980), Miles Davis Trumpet, Giants of Jazz Scrics, Studio 224 Ed.. Lebanon.

222 XIV Congresso da Sociedade Brasileira de Computacio

Baudoin, P. (1990). Jazz. mode d'emploi, Vol. 1 and 11. Editions Outre Mésure, Paris.

Johnson-Laird, P. (1992). The Computer and the Mind, Fontana, London.

Laird, J., Newell, A. & Rosembloom, P. (1987). SOAR: An Architecture of General Intelligence, Artificial
Intelligence 33, 1-64. .

Newell, A. & Simon, H. (1972). Human Problem-Solving, Englewood Cliffs. Prentice Hall, NJ.

Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelligence, McGraw-Hill Book Co., New York.

Pachet, F. 1990. Representing Knowledge Used by Jazz Musicians, In the Proceedings of the International
Computer Music Conference, 285-288, Montreal.

Ramalho, G & Ganascia, J.-G. (1994a). The Role of Musical Memory in Creativity and Learning: a Study of
Jazz Performance, In M. Smith, Smaill A, & Wiggins G. eds., Music Education: an Artificial Intelligence
Perspective, Springer-Verlag, London,

Ramatho, G & Ganascia, J.-G. (1994b). Simulating Creativity in Jazz Performance, & paraitre dans Proceedings
of the Twelfth National Conference in Artificial Intelligence - AAAL '94, Scattle, AAAI Press.

Ramalho, G. & Pachet, F. (1994). What is Needed 1o Bridge the Gap Between Real Book and Real Jazz
Performance?, in the Proceedings of the Fourth Internationat Con fercnce on Music Perception and Cognition,
Litge.

Rowe, J. & Partridge, D. (1993). Creativily: a survey of Al approaches, Artificial Intelligence Review 7,43-70,
Kluwer Academic Pub.

Schank, R. & Riesbeck, C. (1989). Inside Case-basc Reasoning, lawrence Erlaum Assoc. Pub., New Jersey.

Sloboda, J., (1985). The Musical Mind: The Cognitive Psychology of Music, Oxford University Press, New
York.

Steedman, M. (1984). A Generative Grammar for Jazz Chord Sequences, Music Perception, Vol. 1, No. 2,
University of California Press.

Vincinanza, S. & Prietula, M. (1989). A Computational Model of Musical Creativity, In Proceedings of the
Second Workshop on Artificial Intchigence and Music, 21-25, UCAI, Detroit.

Desempenho, Interface com o
Usuario e Projeto de Instrumentos

| Simpésio Brasileiro de Computacdo e Musica 225

A Phenomenological Study of Timbral Extension in Interactive

Performance

ANNA SOFIE CHRISTIANSEN, UNIVERSITY OF COPENHAGEN, DEPARTMENT OF MUSIC

Klerkegade 2, 1308 Copenhagen K, Denmark,

Abstract

This paper features an investigation of the interactive electronic extensions of the
musical performance, based on an phemenological approach to the human perception
of sound in a musical context. The interactive extension of the musical performance
offers, through performer control over the produced sound in real-time, possibilities
for the composer to take advantage of subtle features of acoustic sound, due to the
individuality of the live performance. Richard Leppert understands musical activity as
a synthesis of sound experience in accordance with a visual experience: the sonotic
landscape. Using this concept investigations about perceptive characteristics of
synthetic and human sound will be made, with a purpose of describing the advantages
of real-time sound processing. Further, the structure of the interactive process will be
sketched,and in the final section a brief overview of a piece, NoaNoa, for flute and
interactive electronics by Kaija Saariaho will be given.

Introduction

In this paper I will investigate the phenomenologic difference between synthetic and human-produced
sound, in order to explore the options for an interactive extension of the musical performance feataring real-time
sound processing. This leads to a thorough description of the perceptive characteristics of the human produced
sound in the musical performance, where composer, performer and listener have a certain common knowledge of
the material, based on an empirically experienced musical idiom. By empirically experienced musical idiom is
here understood music created in a tradition where there is a large degree of consensus in the experience of the
sonoric landscape in composer, performer and listener, Utilisation of synthetic sounds interferes with this
consensus by attacking the experienced expectations of accordance between cause (performance gesture) and effect
(soungd produced).

In the approach to composition of computer music, the role of the composer may therefore also
encompass exploration of the field created between boundaries of the scientific representation of sound, to be
manipulated by the composer, human perception, tradition and the cognition of sound, with an awareness of the
fluid limits of human cognition within a musical context, but also within the boundaries of technology's still
rather weak ability to accomodate human musical behavior. To serve this elucidation advantages of the
interactive extension to the.musical performance will be given. These will be presented in terms of the option
for real-time sound processing to encompass a musical material embracing all perceptually significant details of
the human produced sound. Providing these options, the interactive extension will offer a flexible expansion of
the musical material, already anticipated in the traditional electronic extension.

Perceptive Timbral Connotations te Natural and Synthetic Seund

Correlation of Performer and Synthetic Sound

The exploration of the computer as a compositional tool and musical instrument have involved an
investigation of features important for the human perception of sound. In the following, some traits will be set
out concerning the perception of music. This will serve to expose the central differences between an interactively
extended performance, where electronic sounds are triggered by the performing musician's physical and acoustic
gestures, as compared to a non-interactive but electronically enriched performance, such as with a sequenced
accompaniment where whole sequences of sounds, of relatively fixed temporal and dynamic relationships, are
merely started by a trigger, or the case of a tape accompaniment which must be synchronized by click-track or
pre-defined cues for the performer to follow.

Initially three issues can be sctup:

o The performer is accompanied by an independent sound track, synchronization is provided ¢.g. by cues or
click-track.) .

o The performer is "tracked" and used to synchronize a synthetic
playback. .]

« The performer's sound is processed directly on the synthesis of sound.

The interactive performance takes often advantage of the two last issues; using the trackiqg of the performer to
synchronize direct processing of the acoustic sound. Thus will the performer be tracked either }by, e.g., a pitch-
tracker or a MIDI interface. The tracking will be compared to a representation of the score 1 the computer,
where cues for the execution of the respective sound processings are marked.

Qutlining of Differences between Synihetic and Acoustic Sound

This approach requires an outlining of characteristics of the synthetic and the acoustic (human-produced)
sound. This difference may serve to illustrate two main differences between perception of electronically and
human produced sound, because the interactive (and sonic processed) technique permits a synthesis of the
advantages of the musical performance within its frame of reference to tradition and the sonorous extensions
provided by electronic means. The human produced sound involves automatically information referring to a
musical convention, whether this information is contained in the musical texture itself, or in the performer's
gestures as will be explained in the following. The electronic sound, on the other hand, does not neccsgan‘ly refer
to a musical "performance” convention itself, but seems merely to form a perceptual significance by virtue of its
context; and this is conditioned on expectations in relation to the traditional musical performance.

The synthetic musical texture itself thus differs significantly from the human controlled sound in many
ways, .2., by the difficulties in obtaining control for the performer of sonoric gestures as vibrato, transition
phenomena, attack, timbre and more subtle irregularities in phrasing, creating the uniqueness of the human
musical performance.

In music, a distinction is therefore often made between synthetic sound and acoustic-instrumental sound
solely from the sound image, without taking into account connotations of sounds in relation to conventions in a
musical tradition. The most salient difference is that the behavior of the acoustic-instrumental sound can be
changed in real-time by the performer according to musical tradition. The behavior of the non-interactive
synthetic sound is pre-determined, i.¢., it docs not wmirror the individuality of the performer and further does not
refer implicitly to a tradition, but nevertheless often is perceived in accordance with a musicat tradition.

The Signifi f I

The following conventions are considered to have significance for musical perception: The presence of &
human performer affects the sound production in a musical performance in two ways, both of which are
connected to conventional musical performance means; these two effects 1 will refer to as sonorous and physical
gestures. The sonorous gesture can be exemplified by connotations of the perceived sound itself, required by the
listener to make sense in the context of a particular musical idiom. Specifically in connection to the perception
of timbre, it can be exemplified as follows: when a flute plays a piano dynamic, not only a change in loudness
is of importance; significant perceptive cues are provided by changes in vibrato, timbre and attack, all this} in
relation to the specific context, required to give the listener the right feeling of piano. T will not judge to which
extent this is due to a combination of traditional habituation that has turned into a convention and an innate
result of the human hearing sense.

The physical gesture, on the other hand, is more immediately explained as actions used more or less
consciously by the performer to accentuate the musical phrasing; most obvious is the use of the brez}m to
underline phrasing, or the various body movements such as a nod of the head or facial expressions serving to
mark entrances, downbeats or sudden shifts in the musical ambiance, like utilization of contrasting matgrxal
engendering a sudden shift in the musical ambiance, used more or less consciously to underline the lﬂl{SICﬂl
texture. That is: the visual presence of a performer may have significance for the perception of sound. These
close relations between perception of music and bodily movements are described as a cognitive phenomenon by

Ray Jackendott in Consciousness and the Computational Mind.}

17ackendoff (1987) accentuates in relation to perception of music, fhe association of bodily motion in perception -

of rhythmical patterns. I consider that this association has also a significance in the perception of rhythmical
irregularities or breathings used e.g. in phrasing.

| Simpésio Brasileiro de Computacdo e Mdsica

A Phesomenological Approach

A more phenomenological approach is found in the work of Richard LeppertIA Leppert defines the
concept of a sonoric landscape as the reconstitution in our minds of something in excess of the factual: "This
excess is experienced as a representation - and as such is discursive.“sz this Leppert wishes to emphasize the
perception of music, not only from the perception of the sound, but as the impression of sound from the
perception of sound and sight perceived by means of human experience and consciousness: " Music connects to
the visible human body, not only as the receiver of sound but also as its agent or producer,"3 By using Leppert's
descriptions we can understand musical activity as a synthesis of sound experience in accordance with a visual
experience‘? This visual experience will be in accordance with a musical performance idiom where there will be
a habitual relation between visual impression and sound forming the sonoric landscape. I will here add, that the
nature of the visual impression could rather manifest itself as a bodily connotation to the perceived sound in the
listener, not depending on the visual presence of a performer, but merely a cognitive aspect in the nature of
music which Jackendoff names general-purpose abilities® where the sensation of certain traits of musical sound,
such as rhythm and rubato, induce associations to bodily motions.

Connotations of the aural perception may therefore be influenced by connections to the assigned visual
perception, that is to say, a performer's movements and the perceptor's expectations of the sound in connection
with a musical idiom, may have significance for the comprehension for the interpretation of the musical
performance to the listener: the creation of a sonoric landscape. These relative perceptions I will define as
casually interdependent, when the perceptor's expectations of the sound depend on the degree of conformance

between the visual impression, the assigned emotional impression and the sound perceived.

The Impor! f lity for the Perception of Soun

The notion of causality® is important in connection with synthetic sounds, when the perceiver more or
less consciously tries to identify the sound source. Causality should then be understood as a listener's immediate
unconscious image of the sound producing instrumental-mechanism, not literally understood, but rather whether
the instrumental-mechanism refers to traditional categories, e.g., voice, wind, string or percussion instruments,
etc., or, rather as not referring to any instrument category, €.g., SOme kinds of noise, or, sound without the
characteristics of the human performer such as subtle irregularities in vibrato, transitional changes, ¢tc.
Identification with known sound sources, might thus help the listener to place the sound picture in relation to a
known sonoric landscape. In extension of the human performance with synthetic sound, the relation between
sound picture and the visual impression might be segregated compared to the perception of a traditional musical
performance, and this segregation could then be used by the composer to extend the sonoric material in the
musical performance.

The distinction between sonorous and physical gestures can be used as a tool to elucidate idiomatic
properties of the acoustic-instrumental sound in relation to the synthetic sound, with a purpose being to evaluate
real-time sound synthesis as a qualitative phenomenon in relation to the musical work.

Interaction between Computer and Performer

3

The interactive extension of the musical performance is a very important technique for taking advantage
of electronic means within the context of traditional musical performance. The musical texture is extended in
conjunction with traditional musical performative means, thus allowing the performer to directly control the
synthesis of sound or the execution of synthesized material under traditional performance circumstances. In this
paper I will not consider current implementation problems, but 1 will define and discuss the principle of
interaction as a concept.

Interactive extensions to musical performance can enrich the musical texture in different ways according
to the kind of processing the musical material is subjected to. These processes could be divided in accordance
with the origin of the source material to be processed, and the nature of the processing itself as sonic and

1 Leppert 1993, p. 17.

2 Ibid. p.17-18.

3 Ibid. p. 18.

41 do here consider any musical experience to give rise to notions about a visual experience in accordance with
previous musical experiences including visual impressions.

5 Jackendoff 1987, p. 216.

6 This concept was introduced by Chabot in Leonardo, vol 31993

228

gestural processing. In the sonic processing, the instrumental sound itself is processed and transformed by means
such as reverberation, filtering, pitch-shifting or modulation. This affects mainly the

timbral attributes of the sound. In the gestural processing, sonorous gestures such as pitch and dynamic (as
opposed to timbre) are "abstracted” from the performance and subjected to higher-level processing, €.g., as
sequences played back with a different distribution in time, or diffused in space: spatialisation. These played back
sequences can also be sonically processed, or the instrument could simply trigger stored sequences in the
computer, which can be considered as the ideal case of synchronization between performer and a pre-recorded
sound track. The nature of the higher-level processes could be more or less in accordance with traditional musical
gestures.

I have not here considered audification of the performer’s physical gestures in this connection, since
they do not provide any sonorous source material to be processed. The assignment of sonoric material to the
performer's gestures, offers a rich spectrum of options for the composer to interpret the perception of the
musical performance, thus allowing the composer to consciously create a sonoric landscape and not only a
sound image.

Th re of the Interactiv m

An important aspect of interaction, compared to the traditional performance accompanied by a stored
sound track, is the freedom provided by the synchronization mechanism between the interactive system and the
performer. The synchronization is realized by a coordinator concept essential for interactive systems. An
overview of an interactive system is shown on Figure 1:

[Coordinator |

Processor

Input

Detector

J J}ﬁ Sensor

Figure 1

As can be seen on the figure, there are four principle parts of an interactive system: a sensing system that gleans

information from the sound source, ¢.g., with a microphone; a detecting system, detecting pitch or trigger

information, a coordinator! providing synchronization of the input and its respective events; and a last stage’

executing the sound processing.

] ffered by Real-time Sound Progessi

The presence of this coordinating mechanism, effected by the score follower?, provides a freedom for ‘
traditional performance means, such as rubato, individual phrasing, efc.; as.

the performer to take advantage of
well as timbral extensions provided by the sound processing. Real-time synthesis, as opposed to tape music, for:

example, provides possibilities for using a technological approach while permitting composer and performer (0
take advantage of traditional means as sonoric and physical gestures. Another important point is the possibility
for the electronic extension of the musical performance to move, or even reduce, the border between. nol-

idiomatic and idiomatic musical gestures, an elimination to be provided through renewed possibilities: for
changing connotations to, or causality of, sound, as explained in the previous section. i
An approach to understanding these options is offered partly by the timbral exploration. Timbre
contains in itself fairly limitiess extensions of new sound textures, amalgamations of different timbral idioms
causality of sound as an artistic effect: taking advantage of the options for manipulation of the acoustic
properties of the instrument, or capturing the performer's gestures to process a sound in order to emphasize the

1 The significance of the coordinator varies in this connection from the more specific notion of a score followe
requiring a representation of the score in the coordinator e.g. as it is defined by Rowe 1993. It signifies here ¢
mechanism maintaining a synchronization of particular detected events or conditions in relation to more O K
predetermined responses executed by the computer,
2 See Lippe and Puckette 1992.

XIV Congresso da Sociedade Brasileira de Computacio

} Simpésio Brasileiro de Computacdo e Misica 229

significance of physical gestures. The last issue requires an exploration of the significance of bodily motion ina
musical performance. These advantages can be best treated by considering the experience of sound
phenomenologically, as shown in the previous section. The conceptual flexibility of interaction thus provides a
possibility to let the work allude to something external as, for instance, the musical performance as a perceived
phenomenon: the sonorous landscape, within the musical work's own means of expression: the timbral texture. !

NoaNoa by Kaija Saariaho

A BriefIn ion In ion in

In the following section I will examine the processing provided by interaction in the piece NoaNoa by
the Finnish composer Kaija Saariaho. The piece was originally conceived for solo flute and electronics in a
Macintosh version.There, the interaction was provided by the performer's release of certain events by a pedal. In
a new version the real-time processing of the acoustic sound is adapted for the IRCAM Signal Processing
Workstation (ISPW). NoaNoa provides an illustrative example to evaluate the contributions to the acoustic
sound image provided by the interactive extension of the sound. The schematic structure of the workstation is
similar to the construction shown in figure 1.

The Interactive System in NoaNoa

The sensing is performed by two microphones; one right in front of the blowhole to sense the words
pronounced by the performer, and another one "beside” the flute to capture the flute's sounds. The signals from
the flute are pre-amplified, and sent through an analog-to-digital converter. The information from the
microphones is scrutinized by the pitch-tracker, so as to be used by the score-follower to synchronize the
performer with the processing employed in relation to given cues in the internal representation of the score in
the computer2, the other is connected to a pitch-tracker. The selection of which microphone to take the input
from, is pre-determined in the internal score. The sound processing, score following and pitch detection are
designed in MAX. The sound processing, in the recent version, such as filtering, play back of stored sequences
and real-time sampling is executed by the ISPW, the reverberation by a Lexicon sound processor, and the
superposed envelopes from crotales are made through a Reson8.

In NoaNoa the use of electronics helps to fulfill some of the composer's musical intentions, which
would not be possible without an electronic extension. The primary intention is concerned with conveying a
continuos character to the monophonic musical line. This is obtained by adding reverberation to the flute sound:
“the quieter the sound, the longer the reverberation.”3 The breathing is also smoothed by reverberation, but
retains never the less a character of breath determined phrasing while still maintaining a continuos musical
texture. The timbre is extended using special techniques, for instance, is the pitched nature of the flute contrasted
by the whispered (noisy) "second voice" made by the performer, sometimes played back from stored segments in
the ISPW, and sometimes sampled from the performer and played back. Further the flute timbre is contrasted by
using special effects: whisper tones, flutter-tongue, or fingered tones solely attacked by the consonant sounds of
the spoken voice of the performer, a technique resulting in a percussive effect. The monophonic line of the flute
part is fractured using multiphonics and whispering into the instrument while playing, but additional timbral
layers are provided by the sound processing. The composer thus approaches the nature of the acoustic sound
image to encompass an electronic sound image containing sounds that are not within the flute’s normal
spectrum.

It remains to discuss what is conveyed to the piece by the use of interactive means. The first attribute
is a more homogenous sonic extension, perfectly synchronized with the performer part, permitting the performer
an extended timbral and rhythmic control over the course of events, thus providing freedom in the shaping of
musical phrases. This results in a synchronization between performer and a synthetic sound image provided by a
virtual performer, but crystallized over the soloists individual sound. The electronics further extend the
polyphonic character, anticipated in the instrumental voice itself, by implementation of several instrumental
techniques at the same time, resulting in a very complex sonoric texture, enriching the flute sound.

11 do not in this include musique concréte , when it is merely constituted as montage referring to the
surrounding world by virtue of collocations of fragments origining in the surrounding world.

2 The pitch-tracker does not respond to the unpitched sound of the spoken voice, because of that, a pedal is used
to trigger during voiced events.

3 Preface in the Chester Music edition 1992.

230 XIV Congresso da Sociedade Brasileira de Computacio

Conclusion

Thus having outlined some important traits of the human experience of electronic and acoustic sound in a
musical context, I have ignored an evaluation of any technical means to provide the discussed extensions. Many
problems seem to be connected to this field. A major problem is, of course the costs of equipment and soft
ware, and following; the problems of performing pieces made for other equipment and requiring a knowledge
about the actual equipment and the systems used in the piece.

Another important feature concerning the representation of sound in the computer, is the difference
between the phenomenological and the physical description of the same sound caused by the different approaches
to description of sound: the phenomenological description, based on empirical musical experience often taking
into account the origin of the sound; and the numerical description, based on scientific terms not immediately
connected to the empirical experienced sound world, by opening possibilities for transcending the empirical
experienced production of acoustic sound.

A main problem is that the creation of tools to implement computers in the creation of music is a
hybrid area claiming knowledge of the scientific description of sound, computers, composition and human
perception of sound in order to develop adequate tools for the artist. This evolution is far from fulfilled, but will
probably get easier as interfaces between man and computer will make the approach towards control of sound,
simpler and more immediate. Neural networks open up possibilities, since they can be trained to approximate
algorithms representing the details of human skills, and give the artist access t0 control permitting him to use
more traditional artificial means; skills too complex and subtle to be represented as algorithms in traditional
computer systems.

It seems several of the above mentioned approaches still belong to the future, requiring more reliable
systems, and disseminate of equipment and knowledge to put the interactive performance on equal footing with
standard performance institutions as symphonic orchestras and chamber ensembles, it is necessary to provide a
sufficient performances number of for the composer to dare to use time and energy exploring the unknown.

References

Chabot, Xavier: To listen and to see: Making and Using Electronic

Instruments, Leonardo Music Journal, vol. 3 1993, pp.11-16.

Jackendoff, Ray: Consciousness and the Computational Mind, MIT Press 1987.

Leppert, Richard: The Sight of Sound, Music, Representation, and the History of the Body, University of
California Press 1993.

Puckette, Miller and Lippe, Cort: " Score following in practice " in Proceedings of the International
Computer Music Conference, San Jose 1992. International Computer Music Association, San Francisco.
Rowe, Robert: Interactive Music Systems: machine listening and composing, MIT Press, 1993.
Saariahe, Kaija: NoaNoa for flute and electronics, Chester Music 1992,

With special thanks to Xavier Chabot and Kaija Saariaho, Institut de Récherche et Coordination Musicale, Guy
Garnett, Center for New Music and Audio Technologies, UC Berkeley and Jens Brincker, University of
Copenhagen .

| Simpésio Brasileiro de Computacio e Miisica

231

UM NOVO MUSICO CHAMADO "USUARIO'

FERNANDO IAZZETTA

Pontificia Universidade Catolica de S&o Paulo

Comunicag8o e Semittica / Laboratério de Li
inguagens Sonoras
R. Monte Alegre, 984 - Perdizes - Stio Paulo-SP -CEP 05014

Resumo:

Nossa tradiclio ocidental estabelecen uma separaciio aguda entre os papeis desempenhados
ag@_lﬂx;sdaahvidademsical:ocomposhor,ointérpmteeomvintzopemmuncamposmuitop;l;
delupmdos e easpectficos. As possibilidades de imteraglo trazidas pelo uso do computador em
glﬁmca,dece{tx}fmmdilqemmssepmagéesefsmnsurgirumanovaca&egmia,capaz
mpox:nrhabmdadesespeczﬁcasdecadamndatesagemﬁ:mdidm. Esta nova categoria
estaria ligada a0 que chamamos corventemente de "vsuario”.

Introducéo

”Est?uplena&imfmecmgequecheg:modiaanqueocomposm, apos realizar graficamente sua
partitura, a _automnncanmﬁecoocadaemmna ina que transraitich
musical a0 ouvinte® [Vardse:1983, 92]. g 4 fieiente © contetdo

Qusndo o compositor Edgar Varése fez esta previsio, o computador, do modo j

< € X A como o concebemos hoje, nio
pamvademnamegﬁommﬁthmc&o..\’uése encomtrava-se, ja no infcio deste século, proﬁmdi;eme
nmremado_ mmmgﬁodeqwosmodmmnlmcﬂonmsﬂmledemspomdeescumepmfeﬁmma
mmg&ynademmmwmdemoducﬁommqugmmﬂo,sbpodhmmmmkmgimﬁodo

Poucna; décadas depois, as previstes de Vardse foram se tornando realidade i
} .) 4 ¢ e n#o podemos deixar de
m (;:1;!0::8 p?:v .-v.b\bei;1 quais serinm as solucBes musicais concebidas pelo compositor de Jonisation e Poénn?:
Mdeho?e_ se tivesse 4 sua disposigdo todo o arsenal tecaologico que pode ser empregado na nmigica feita nog
A historia que se passa enire o surgimento dos primeiros instrumentos elétricos do infcio do século, como o
ondes de martenot eo theremin, e & criaglio das atuais inferfaces sovoras inteligentes comml;das por
complmmdmes, ¢ uma bistoria repleta de idéias que aposiATAM NUMA transformagiio do nosgo universo musical de
umxg denso e profundo. Se obsgrvamos hoje, em diversas esferas da producBio musical, um movimento de
ex:zs?bremxs?mmfotmcées, mpnﬁosedeveuofatodequeonﬁzsicopmouawasuadisposicﬁouma
ﬁa timbres msior do que se poderin obter através de instrumentos tradicionais, nem o pouco & capacidade
computadqms para executar pagsagens fousicais inopossiveis para qualquer instrumentists virtuose, mas gim
posque a propria msica passou a ocorrer dentro de um contexto completamente novo.

Aquele que faz ¢ aquele que ouve muisica

A miisica ocidental, destro de sua tradicio, estsbelecen uma separaglio explicita enire o8 agentes nusicai
qual:eoe:pmmavmgmdocolowdamqumﬂo.Difmdoguamﬁomeulnmmdeamﬁm:
uma rosnifestecio coletiva, o Ocidesse foi estabelecendo, aos poucos, lisnites emtritos entre aqueles que criam,
aque:? i&ug Wdeste e aqueles que ouvem mlsica.

icio processo pode ser idendificado no final da Idade Média quando o cantochio pasea a ser a
mamw;mdemmfmmmamimpmfmgwmwmgoquerelmaemse:inﬂum:;dob;:
m‘}’imstepgrlodogueanm:icavaisedmﬁgardesusﬁmcloastrimmexneriumlpmmum’uumnovopwel
?:mlum,nnmomvohadpmlhdiooemestéﬁco‘Impée-aeaonﬂsicoumnmidadedecﬂunom
mulusepg&éesd@odahnwne,comimo,wodesejodemmAnﬂjsicnseufmadatmdit;nodo
canto gregoriano, tornando-se cada vez mais rica e complexs, exigindo, também, interpretes dedicados e dgeis

- e geus ingtrumentos.

.hmmﬂeMommsoddeudmﬁgxmdocomﬁm,doimMenﬁMMcm,edo
ouvinte como o8 trés elos centrais da produciio musical, Este quadro j4 ¢ explicito no periodo Repascentista e,

232 XIV Congresso da Sociedade Brasileira de Computacio

mwowsegxxmanmmwm@ugmdwwm,mmmdempmahmm Compositor, interprete ¢
ouvinte t2m que desenvolver a0 mniono suas especificas para que nada escape no complexo
digcireso dos sons. Tal processo que ocorre durante a passagem da Idade Média pars a época Moderna reflete
uma crige dentro da linguagem que carrega mauites anslogias com a situagfo amal, pois, da mesma maneira
vivemos hoje mudangas profundas em todas as exferas culturais, incluindo af a rafsica e as artes em geral [ver
Jazzetia: 1993).

Umrdlmampeﬁoda!hmagmmsﬁcﬂmdﬁsdehqicmohig&&d&mn&mqumda
introduglio do ugo de computadores noa diversos estdgios da produglio mmsical. Da neesma meneira que o#
processos de excrita rousical suegidos entre o aéculos IX e XM foram exsenciais para & formaghio de misicn
classica europeis, hoje o computador vem alierando sensivelmente o desenrvolvimendo desun lingnagem.

Nos altimos anos, a informética tem penetrado rapidamente em todog o8 tipos de atividades humanas e, aos
poucos, sus utilizaclio vem se incorporando totalmente a0 nosgo cotidiano, 40 ponto que sia prefenca NO3 Pasma
naturalmente despercebida, como ocorre em relagiio 4 eletricidade ou a0 ugo do automdvel.

O fato de ve encarar uma tecnologia poderosa como ¢ a do computador como um sisterna que ¢ gerado, nilo
apenas pasa suprir algumes de noseas necessidades, masquetambéme}muﬂhlénmanomrgmwmodeem
necessidades, traz uma idéia complementar Aquela de Mclauhan de que o homer crin ferramentas para servirem
mmemmdewuhabdmmmrm(homo axtenders). Neste esthgio atmel, onde j& podemos trabathey
com maquinax digitais através de interfaces mads ou menos eatisfatorias, o computador deixa de ser apenas uma
extensio humana para se tosnar Bm Novo instrumento que poder agir e seagir 48 nossas peopries ages. Nio se
trata de defender aqui a idéia utdpica de vma mbguina autdooms, capaz de e desenvolver e aprender por si
proprin. A questiio é olbar o computador como wma posgibilidade auxilisr, que vai aléte da execuciio
infinitamente répida de calculos complicados e acBes precinas. A quesilio é a de conseguir crisr um tipo de
relagio onde o computador seja wtilizado realmemte como uma mébquina interativa e capaz de gerar
possibilidades realmenite noves.

Miisica Digital

Muitomnboraamﬂxzagﬁodecompumdommﬁsncaten}mueimcmdoaqunsewmeoprémo
computador seja um pouco mais sntigo que isgo, o pleno estabelecimento do que hoje conhecemos por computer
music ainda é um projeto em andamento. H4 30 anos atrde, a mieica digital consistia em umn drea experimental
dumodeumcnmpommvamconhzadoconmnmsmelmﬁmca.Naquehépocs,mxmpmoosoa
compositores que podiam se envolver num trabalbo amltidisciplinar que englobava desde o desenvolvimento de
hardware até a concepglo de algositmos pars sintese ou composiclio musical. Durante todo este periodo o
computador foi utilizado em ¢ituacbes gue simulavam os processos twadicionais da producio mmsical. Os
programas de sintese sonora gerados a partir do MUSIC IV desenvolvido por Max V. Mathews, a composicho
algoritmica inaugurada com a [lliac Suife de Hiller e Izaacton e o posterior lancamento comercial de
instrurnentos digitais foram projetos cujas concepedes pariiram de priticas correntes na composigho e execucho
da mosica tradicional. Ou seja, evam novas ferramenias que se destinavam a produgzir sons semelhantes aos
gerados pelos instrumentos tradicionais e pegas musicais que seguiam os mesmos principios basicos da mbisica
europeia.

Parece que somente agora o computador comega a apordar pasa diregGes realmente originais na realizagfio
musical. O surgimento do comprtador pessoal, o barateamenio dos equipamentos e a tapida evoluglo na
capacidade de processamento e armazenamento de dados, estiio fazendo com que o computador deixe de ser
apenas upoa ferramentn auxiliar no processo de compogiglio e producio para frazer um novo vigor A mfsicn
contemnporines. Se num primeiro momento esa trapon digital atraiu nnvitos compositores mais pelo interesge por
novos processos de composicio que pelos resultados sonoros que podiam ser obtidos, hoje & ineghvel que as
ferramentas digitais s#o rexponstveis pela fnteoduciio de processos realmente novos na migica.

Certamente, inicia-se uma nova fage demtro da histéria da padsica que vem se desviando da tenddncia 2
individualizaciio e racionalizago que comegou a se estabelecer a partic do Renascimento. O que e nota agora,
através da ampliagiio de posibilidades trazidas pelo computador, ¢ uma seordenncio mog processos de
conposicao, execuclo e andicio. No lugar do projeto racionalista insngurado por Descafes, surge 1MRA ROVA.
heuristica bastante poderosa baseada no conhecimento por simulagdo. O computador pesmite que e construam
modelos que podem ser consiantennente testados, redivecionndos, e realimentados a partir de resnltados obtides
previamente. A obra individual e acabada cede lugar 2 obra em constante evolugho, que retroativamsnte vai
gerando suas proprias solugdes num jogo interativo de tentativas e erros. A obra perde sua aura no sentido de
benjaminiano [Benjamin: 1985 | e toma-se obra virtual.

A possibilidade de se transformar musica em informactio digital tera modificado marcadamente nosia
relacio com o universo de signos sonoros. Se as gravactes em fitas eletromagnéticas ou em discos de vinil

| Simpésio Brasileiro de Computacio e Misica

233

liaram it e & portabilidade do repertorio musical, a gravachio digital praticamente destroi todas
a5 barreiras de distribui¢fio e manipulagiio do material sonoro. O planeta estd rapidamente se tornando uma
imensa rede digitalmente interligada e o fluxo de informag#io que trausita nessa rede é algo que seria impensavel
h4 algups poucos anos.

Com isso, a idéia de que a sociedade atal ¢ a sociedade da cultura da massas, onde cada produgao signica
busca atingir o maior nfmero de peszoas, comega a se modificar neste final de século. A revolugiio digital aponta
para uma inversio neste processo: estamos enfrado na era da cultura personsalizada, onde cada individuo serd
obrigado a navegar deniro de uma quantidade enorme de informactes e selecionsr aquilo que realmente The
interessa. Ou seja, a0 mesmo tempo que ha uma explosiio na produgto signica, ocorre também uma segmentachio
desta produg@io. As revistas inierativas feitss a partir de recursos multimidia que vém substituindo o papel por
suportes digitais ou as redes de BBSs (Bulletin Board Systems) que hoje interligam pessoas no mundo inteiro e
oferecem os mais varindos servigos via computador s&o alguos exemplos da forga dexte novo peradigma que vai
se formando.

Imteratividade

Talvez o conceito mais importante deniro do universo que se abre com 8 utilizaglio do computador na
miizica seja o de interatividade. A possibilidade de se intervir nos processos musicais, seja na comporicio, scja
pa execucho, desirdi as fromieiras entre o compositor, o interprete € o ouvinte: oz papeis de cads um deles
aparecem sobrepostos a partir do momento em que lhes é dada a possibilidade de interagir nas diversas fases da
produgtio musical, ds composiclio & audiclio. A propria fromteira emire o compor € o ouvir tende a se diluir &
medida em que qualquer um tem & sua disposiciio recursos de software e hardware que podem ser utilizados na
realizag#o de nma pege musical. Nosas idéia de compositor &

"ume, concepgiio especifica e peculiar europein: inteligincia solitéria do compositor crin a musica ¢ a

oitisica ¢ vma imagem do pensamento do compositor. A fuga do condicionado, do especifico e do provisorio

¢ algo complementar & essa concepgiio de musical...] A tecaologia musical ¢ hoje largamente dedicada A

promover este projeto de fugs, fazendo-nos acreditar, cada vez mais, que a misica esth em algum objeto

sonoro abstrato, cuja imagem nodHs polimos no computador com ferrsmentas cadn vez mais refinadas”

{Perkis: 1987, 3651,

Holeemdmcontﬂmoscommtemasquepmnﬁmaqwﬂquaum”ﬁw’nmmcamnammdadedese
passar por anos aprendizagem nmsical, O que poderia ser, a primgzira vista, entendido como uma
dessn que, desde o romantismo, serve como modelo de criagiio para as outras arles, pode significer a ampliagho
de seus borizomtes, hoje restritos & iniciados aos quais chamamos mutsicos. O leigo ¢ mais despojado da pesada
uadxg:ﬁpnmalcnldoOmquueonﬁmcoe,pormonmno,podcserumelmmtovﬂmsoampmdu&;ﬁode
novas formas musicais. Mas, pars que ispo ocora é necessfrio que 1) o msico abdique da "posse” exclusiva do
conhecimento mmgical e passe & acreditar em maneires aliemativas de se pensar a mflisica e que 2) se
desenvolvam novas interfaces, nilo mais criadas s partir des estruturas de composighio e notaghio da nbsica
tredicional, mes segundo as novas necessidades que se impBem & mogica contemporfnes,

A questiio da geraghio de novas interfaces ¢ de extrema importincia para o desenvolvimento da misica pois
estamos acostumados 2 penss-la segundo um padriio de sonoridade que pouco se modificou nos vltimos séculos ¢
a representé-ls através de vm sisterna notacional que existe desde o Renascimento. A idéin da musica de concerto
executads por uma orquesira que, em sus base, ¢ 8 mesma que foi utilizada por Mozast ou Beethoven, perdura
ainde em boa parte das manifestagdes da misica atual, A trevsiclio de um sistema onde colcheins ¢ seminimas
glio executadas por um violino ou oboé, para um sistems de valores digitais que correspondem 2 som e que
podem ser controlados por v mouse airavés de alteragbes gréficas na teln do computador, representa a
traxmigiio de um paradigma musical para outro e deve ser tratada com seriedade.

Oz botbes e sliders dos primeiros sintetizadores operavam de forma bastante imiuitiva sobre diferentes
parimetros sonoros. Seu movimento guardava vm semelbance mecinica de extensfio e direcionamento com as
modificagbes sonoras que exam produzidas va saids de um alio-falante. Ou sejs, mantinhem o mesmo tipo de
relw&ogmmnlquemremosmownmmdos&dmdcumpmnmeomqmpmduzunseu
instrumento. Hoje, porém, o computador permite que se criem interfaces onde n¥o existe nenhums relagiio pré-
estabelecida entre a mossa intervenglio e o resultado somoro: um gesto brusco pode gerar um som suave e a
mudanga de vm pequeno detathe pode acarretar uma transformagiio global dentro de uma pega.

Esta idéia que aponta pars um novo "solfejo” musical no ¢ nova. Pierre Schaeffer, ja no final dos anos 40,
dava passos imporiantes nessa direclio com seu solfsjo de objetos musicais [Schaefler:1966] e, nos snos 60,
lannis Xenakis desenvolvin o UPIC, sisteroa onde o usudrio deseshava em uma interfisce grafica formas que
seriam posterionmente convertidas em som, Mes, ainds hoje nfo dispornos de interfaces satisfatoriamente capazes
de tomar a producHo sonora slgo reslmente virtual, de maneira que n¥io estejn mais presa A relaglio csirita entre

234 XIV Congresso da Sociedade Brasileira de Computacio

ge5to e resultado sonoro. Certamente com tunitas dificuldades téenicas e tecnol6gicas a vencer, o campo que hoje
se chama realidade virtual poderh trazer, oum fisturo bastante proximo, possibilidades muricais exirernsmente
ricas,
EmwmmoeomnnﬁxﬁumldiwerﬂnﬂmdizﬂamﬂadeMédi&emamﬁeﬁmdemudo
mundo modemo, estas povas interfaces spontam para a peraonalizachio e segmentacko da peoduclio rousical cada
vez maiores, A muitimidia, as TVs a cabo, a wtilizachio de fibras 6ticas na tranaferdncia de dados, a conecglio em
rede de comapuitadores pessoais & centros de pesquisa o mundo todo, tornam o usudrio incepsz de copsumir &
quantidade enorme de informagiio que encondra & mis disposiclio. Ema proliferactio signica exige uma produglio
culiural espectfics, confiével e qualificads de acordo com as necessidedes de cads individuo.

e por um lado o produio cultural se torna cada vez mais segmentado e personalizado, por ouiro seus
processos de geracko, a medida em que se distsaciam de modelos artesanais e moechnicos, tornam-se processos
mattidisciplivares, Noz anos 60, o desexrvolvimento da eletro-actiatics tornou possivel a realizaclio de pega
musicais que prescindiam da staglio de interpretes, prepunciando o sen dessparecimento mawn futuro pedximo.
Porém, o que tem se notado ¢ que a coniputer music plio apenas traz um novo vigoer o papel do interprete como
proporciona uma sproxinaacho rauito maior entre efte e o compositor: a maneira aberia como se produz mbgica
com computadores exige uma interatividade do mifeico com a obra mwito masior que a existente entre o
instrumpentists ¢ & composiclo tradicional mediada pela partitira. Além disso, a noclo de intesprets re expande
para aléra ds figura do iostruscentista habilidoso ap exigir-lbe uma suaclo mais completa que pode extar
envolvida com outres midias que n¥o & sonora.

Um nove mtizice

Finalmente, é preciso pepsar a respeito de novas possibilidades dentso da propris informitica mmsical. O
computador ainds hoje ¢, na msioria dos casos, um prothtipo da comhecids méguina de Turing e seu
fiuncionsmentio se baseis pa srquitetura projetada por von Neumann. Seu modelo consigte emo ume unidade de
memoria e uma unidade central de processamento (CPU) que realiza seqiidneiss operacionsis sobre a
iformacio bindria srmazenada em algums parte ds memoria. Estamos, de certa forma, t2o habituados a esze
randelo que nfo percebemos o quanto ele determing ox tipos de operagtes que realizamsos no computador.

Na verdade, quando utilizemos o computedoz, seja em miwica, seja em outro campo qualquer, estamos
mijeitos & um tipo particular de linguagena que ¢ imposta pela estruturs intrinseca desias maquines. E como diz
Rolsnd Basthes em sua Aula [Barthes: 1978], a lingnagem se define mouito mais pelo que ela nos obriga a dizer
do que pelo que ela noa permite dizer. De qualguer forma, por mais répidas que sejam as CPUs, por maiores que
sejam a8 roemdriag € por moais desenvolvidos que sejam oz softwares, estamos semipre presos A linguagem da
rodquina de von Neumman.

Umns shordagem complementar a este modelo de computagiio tradicional que vem se desenvolvendo dextro
dos mais diversos campos nos Ulticoos anog, inclusive o da mfisica, ¢ 8 do copexioniamo. O modelo conexionista
de compustagtio agresenda vm pomto de vista basiame diferente que tem sexvido como uma alternativa em casos
onde & computachio cléssica nio ee mostea eatisfitoria.

O conexionismo se inspira mum modelo fisioldgico da estrutura mental para conceber sua "mdquina”,
chamada de reds neural. Enguanto sisterss cléavicos consiroern mias estruturas a pastic do encadeasaento serial
de comsndos, 08 sistemas conexionistas operam através de uma estrumnra topologica, a rede, que comtém
virtnalmente ss informoaces (Mconhecimento®) do sisterna. Aparentemende, a8 peculiaridades de cads v destes
gistemeas oo fezem com que um se Mosire mais ou menos eficaz que o ovtro, mas apenss determinsm a
especificidade de cada vm [Andler:1990, Clask:1990]. Diferente dos eistemas cléssicos, ag redes meurais
eliminam s dicotomia entre soemodria e CPU, estando aptes s irabalhar com tnformagdes incompletas. Além
diezo, o sisterna pode incorporar processos de aprendizagem sem a necegsidade de ser alimeniado por reprag
formais (0 que se mostra imposeivel no dominio da computagio clissica). E dbvia a importdncia do modelo
conexionisia na atividade rausical: pode-ge criar redes capazes de realizar ¢ avaliar eventos mugicais segundo
critérios que jamais conseguiriamos formalizar.

Apesar do desempenho visivelmente superior das veder nenrais na goluglio de problemas onde existem
informaces incompletas ou que exigem flexibilidede no tratamento de dados, os procedimentos da computagito
cléenica ainda slio a melhor rolugio para tavefas que podem rer objetivamente formalizadag, como a ordenaghio
de listas de dados ou a efetusciio de cAlculos. Visto que ambos os gistemes podem sex implantados num mesno
tipo de maquing, talvez a realizaglio de programas hibridos, que incorporem técnicas clésricas e conexionistas,
powss reprezentar um sumento na capacidade de execughio de tarefas e simulaghio de procesgos ousicais em

| Simpésio Brasileiro de Computacio e Misica

O que essas novas linguagens” nos trazem ¢ a capacidade de simmlsr nossos modeloy mentais, prever
resultados e retroagir now processos criados. A realizaciio de uma obra mamical no esth mais press as notss de
uma partitura fixada sobre o papel, mas pode eer trabalhada wobre um owutro tipo de modelo, dingmico e
interativo, que pode ser constantemente atuslizado pelo usudrio.

"Um modelo digital n&o é lido ou interpretado como um texto cléssico, ele geralmente ¢ explorado de forma

interativa. Comirariamente & maioria das descrigbes funcionais sobre papel ou aos modelos reduzidos

analogicos, o modelo informético ¢ essencialmente pléstico, dinfmico, dotado de uma certa sutonomia de

aclo e reagiio” [Lévy:1993, 121].

Esgse modelo digital estd baseado em novas formas de representaciio que incorporam interfaces interstivas,
cujas possibilidades vilo mmito além daquelas ofevecidas dentro do contexto da msica realizada por meios
tradicionais. Os papeis desempenhados pelos trég elos da produglio musical - compositor, interprete e ouvinte -
perdem sua especificidade & convergem, agora, a um ainico elemento: o usudrio.

Através da interatividade com a mbquing, o usuério, especislista ou nfio, pode ter acesso répido e eficiente a
dados sonoros de diferentes naturezas e manipulé-los de modos diversos, podendo aceitar o rejeitar o produto de
cada uma de suss intervengOes pars, recursivamente, chegar a um resultado que Ihe agrade. O desenvolvimento
de uma ioformética musical baseads em um conceito aberto de usuario faz vislumbrar uma espécie de
democratizaghio no acesso a todo o proceszo musical (por ronito tempo restrito & uma classe de especialistas, o8
sisicos), a0 mesmo tempo que impde uma reflexiio cada vez maior & respeito da interaclio enfre o umiverso
#oRor0 e otitrod cbdigos (imagens, hipertextos, geatnslidade, ete.) dentro da produgio mousical,

Referéncins Bibllegraficas

- Andler, D((199;);. Conmexionnistoe et Cognition: & la recherche des bonnes questions. In Revue de Synthése
1V, 1-2 (95-127).

- Barthes, R. (1978). Legon, Pasis: Editions du Sevil,

- Benjamin, W. (1985). A Obra de Arte na Era de sua Reprodutibilidade Técnica. In Obras Escolhidas. Vol. 1.
Trad. de Sérgio Paulo Rouanet. 8o Paulo: Rditora Brasilienss,

- Clark, A. (1990). Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing.
Cambridge: MIT Press.

- Iazzetta, F. (1993). Musica: Frocesso e Dindriica. Bio Pauvlo: Bd. AnnaBlume.

- Lévy, P. (1993). Ay Tecnologias da Inteligénela, Trad, de Carlos Irineu da Costa. Rio de Janeiro: Editora 34.

- Pegkia, T. (1987). The Future of Music. Compiled by Lasry Polansky. In Leonardo, vol. 20, n.o 4, pp. 363-
363,

-Bchaeffer, P. (1966). Traité des Qbjets Musicaux. Parig: Editions Seuil.
- Vardge, B. (1983). Kority. Trad. para o feancts de Christiane Léand. Paris: Christisn Bourgois Rditeur

| Simpésio Brasileiro de Computacio e Misica 237

A New Technology for Musical Sound Synthesis and Control

RICHARD HODGES
Gibson USA
2560 9th St.

Berkeley CA 94710

Abstract

In using electronic music synthesis for performance, an important issue is
providing the musician with a familiar and powerful way of controlling the
instrument. Keyboards have been the most common control device, but the
keyboard is limited in expressive possibilities compared to other instruments such
as the guitar. We are developing an electronic instrument which uses the electric
guitar as a performer interface which controls a wide palette of sounds and special
effects.

We use a special guitar that is fitted with a fret scanning system and with
separate magnetic pickups on each string. These inputs are processed digitally to
analyze the guitarist's musical gestures. Several parameters are calculated for each
string in real time and passed to a synthesis engine which plays sampled sounds and
applies controliable modifications to the samples.

In another mode of operation, the actual signals from the guitar strings are
modified by combinations of basic algorithms such as non-linear distortion, pitch
shifting, and tuneable filtering.

This instrument incorporates a new digital protocol for communicating music
performance data, called ZIPI. This protocol has features lacking in MIDI,
including real-time updating of information for individual notes.

Electronic music instruments: promise unfulfilled

Electronic musical instruments have become very important in live musical performance and studio
production. They have several advantages over conventional acoustic and electro-acoustic instruments: wide
palette of sounds; flexibility and ease of control; and reproducibility of sound, rhythm, and intonation. But they
have several disadvantages also. Principally, these stem from the keyboard model on which most electronic
instruments are based. The keyboard has severe limitations as a musical interface and control device. Control of
musical events is limited basically to timing of attack and release, and velocity of attack (of course some
keyboards also support after-touch). Electronic instruments differ greatly from traditional instruments in which
the musician is directly in touch with the sound producing vibrations. In wind instruments, he can make subtle
and rapid changes in timbre and pitch by changing the pressure of his lips, tongue, and diaphragm. In plucked
string instruments such as the guitar, he can change the timbre by where and how he plucks the strings and by
touching the strings before and during the note, and he can change the pitch by “bending” the strings. In bowed
string instruments, the possibilities of contro} are even greater.

Additional limitations on electronic instruments are incurred by the nearly universal electronic protocol
known as “MIDI” which is used for controlling, recording, and communicating performances of electronic
musical instruments. MIDI has two chief problems which relate to its origin as a way of communicating
keyboard data: speed of communication, which can result in noticeable delays in musical events; and lack of a
flexible and powerful way to specify modifications to ongoing notes. '

238 XIV Congresso da Sociedade Brasileira de Computacio

As a result of all these factors, musicians have been frustrated by the inability to combine the advantages
of electronic and conventional instruments. The benefits of electronic sound generation and manipulation have
not been extended to the widest possible range of different kinds of music.

A new kind of electronic instrument

We are attempting to address the limitations of electronic music with a new famil)f of instruments that
provide much more intimate real-time control to the musician, and a wider palett? of sounds and sound-
modification algorithms. The first instrument in this family is a second-generation m§trument based on the
electric guitar. The basic aim is to enable the use of the electric guitar as a controller in §uch a way that the
skilled guitarist can employ the large repertoire of instrumental techniques he has lf”ab(.)rxously dc?vclopeq to
control the synthesis and processing of musical sounds. Other instruments, including v:olm., woo'd\jvmds, voice,
and drums, can also be fitted with electronic pickups and used as inputs to this new device, giving a similar
range of expressive power to skilled performers on these instruments. .

This work builds on experience gained with the guitar- and violin-based synthesizers c.]eveloped and
marketed by ZETA Music, which is now a division of Gibson USA. The principal predecessor 'mstrument, the
ZETA Mirror-6 MIDI guitar, used a combination of fret scanning, independent electronic pxlckups on eac.h
string, and real-time pitch analysis to produce MIDI signals that can be used to control a conventional electronic
synthesizer. o o

The new instrument goes far beyond the earlier ZETA instruments in several directions. The_ contmu.mg
evolution of digital audio electronics allows much more complex processing of the guitar signals in r?i'll‘ time
within the practical constraints of a commercially viable package and makes possible many new capabilities in
electronic music instruments. Features of the new instrument include:

« Built-in 16-bit sample playback synthesis engine, with high-quality sounds in internal ROM

« PCMCIA card interface for libraries of additional sounds, patch storage, and firmware upgrades

» Stereo output, with controllable pan for each voice

s Fast and accurate tracking of guitar strings vibration parameters

» Pitch (fret pitch and instantaneous pitch)
o Amplitude

» Spectral envelop

» Spectral Timbre analysis

» Complex synthesis engine .

o Multiple-component sound wave files (odd harmonics; even harmonics; non-pitched component)
o Post-synthesis filter with real-time controllable parameters '
o Real-time matrix mapping of analysis parameters and external inputs to control synthesis
s ZIPI (and MIDI) protocol for fast flexible communication of control parameters
e Can control other synthesizers
o Can respond to external controllers
* Hexaphonic waveform mode processes string signals individually
= Six channels of 16-bit low-noise digital-to-analog conversion
» Independent processing of each string signal
o Variable pitch-shifting and harmonizing
e Other nonlinear algorithms
s Pre- and post-filtering, controllable in real time

Implementation

The new instrument employs several high-speed digital processors, including CISC, RISC, f'md DSP
technology. These processors perform all functions for analyzing and synthesizing wavefox‘ins, user mterfz{ce,
and communications, allowing functions of the instrument to be upgraded and customized in the field by loading
new firmware. i

In order to obtain accurate string pitch information, we perform a time-domain analysis of the waveform of
each individual string. Based on our experience with the ZETA Mirror-6 MIDI guilar- controller, Ath‘e time
periods are measured between successive inflection points of the waveforms and a variety of heuristics are

| Simpésio Brasileiro de Computacdo e Misica 239

applied to these raw measurements. These heuristics are aided by knowledge of the position at which the string
is fretted; allowance has to be made however for special techniques such as harmonics and deep whammy-bar
pitch bends. Ta very accurate value for string vibration frequency can be determined in a little more than one
complete period of the waveform. Accurate control signals for synthesis are produced with a time delay that is
musically minimal.

We also use a digital processor to perform a spectral analysis. This enables us to measure parameters
reflecting the timbre of the string signal. Spectral tilt is determined as a weighted ratio between high- and low-
frequency components. We also measure the proportion of three different components of the string signal: odd
harmonics; even harmonics; and non-harmonic vibrations (i.e. components of the sound not resulting from the
vibration of the string). These kinds of information are computed in real time and combined according to the
user-specified program or “patch.” The results are used as control information for the synthesis engine.

A digital processor is used for synthesis of output waveforms. Sample files representing different
instrument voices are accessed from built-in ROM or from a PCMCIA card; as in conventional sampling
synthesizers, these instrument samples are interpolated and resampled to shift them to the pitch determined by
the user patch. Often, the synthesized pitch would be the actual instantaneous pitch of the guitar string; however
one major advantage of our instrument is that the pitch can be transposed by a fixed tonal interval or otherwise
modified for musical effects. Each instrument voice is actually represented by three different files which contain
the odd harmonic information, the even harmonics, and the non-harmonic information for the voice. These files
are obtained by complex off-line processing of sound recorded from actual instruments under studio conditions.

Digital filtering is applied to the voices synthesized for the six strings. The resulting signals are mixed and
panned between left and right output channels. These functions are also controlled by analysis parameters as
specified in the user patch. Finally the signals are sent to two 16-bit digital-to-analog converters for output to
external sound amplification equipment.

In the hexaphonic waveform mode, the processors perform a variety of algorithms which act directly on the
waveforms generated by the strings and modify them; it is these modified waveforms that are sent to the output,
rather than synthesized waveforms. This is an important extension of the technique of applying deliberate
electronic distortion to the sound of the electric guitar. This technique became enormously important in
commercial music due to the success of the genre of Heavy Metal. In our instrument, the modifying algorithms
can be applied to the waveform of each string individually, or to combinations of the string signals. The
advantage is that whereas traditional distortion devices inevitably result in cross-modulation products of the
signals of the simultaneously played strings, in our instruments, this does not necessarily occur. Of course cross-
modulation is sometimes musically desirable, but with our instrument it can be controlled. Also, importantly,
our method allows the natural dynamics of the guitar to be reflected in the output dynamics if desired, as
opposed to conventional nonlinear processing which results in dramatic compression of the dynamics.

The power of digital processing allows much more complex algorithms than the simple nonlinear mapping
of waveform that was characteristic of previous distortion devices. We have implemented algorithms for pitch
shifting and harmonizing of the guitar notes, preserving all timbral and dynamic qualities of the orignal signal.
Other algorithms are under development which generate transformations of string timbre.

In the hexaphonic mode, individual filters for each string are also implemented which act both before and
after nonlinear processing. These filters can be controlled in real time based on measured properties of the string
signals.

A new paradigm for electronic music instrument communication

Contemporary practice in electronic music is to use modular units connected by MIDI cables. A typical
setup for live performance or studio recording consists of several units including controllers (keyboards, drum
pads, breath controllers, guitar and violin controllers), sound generators (samplers are the most common type
today, although FM and other technologies are widely used also), and integrated units combining a keyboard
and sound generation capability. In addition, personal computers are often fitted with MIDI interfaces which
allows them to run software to record, play back, and modify MIDI data during performances. The development
of the MIDI standard began about a decade ago in response to the need for such networks of music performance
devices.

However, MIDI is saddled with numerous limitations. First, there is speed. In order to utilize the serial
communication IC’s used in early personal computers, the communication speed was limited to 31.25 kbaud.

240 XIV Congresso da Sociedade Brasileira de Computacdo

Since the basic performance model of MIDI was the keyboard controller, which can only generate a limited
number of note-on and note-off events at one time, this was margirally adequate. For example, the attack
information for a ten-note chord can be transmitted in about 7 milliseconds, which is on the borderline of
perceptibility. However, serious speed problems appear when several controllers are sharing the same MIDI
network, a common practice, when musicians try to use techniques that depend on very accurate time
relationships between events, for example flam techniques on percussion controllers, and especially when
information from pedals, joysticks, and other continuous controllers needs to be updated at a rapid rate.
Communicating guitar controller information becomes very difficult; just to update pitch bend information 100
times a second for six strings would exceed MIDI bandwidth.

Another category of MIDI limitation stems from its implicit model of musical events. Basically, MIDI
assumes that the principle information about a musical event is established at the attack, and comprises simply
semitone pitch and velocity (a keyboard concept translating into amplitude). This model derives from MIDI's
heritage as a representation for keyboard and percussion events, where it is appropriate. But it is not a good
model for instruments where the performer remains in control of pitch, amplitude, and timbre during the course
of the entire note. Some features were added to MIDI to try to accommodate continuous information: controllers
based on the joystick and foot pedal model; keyboard aftertouch; and pitch bend. These features are not well
integrated in the MIDI model however, and different implementations are not always compatible.

People have been complaining about these problems ever since MIDI first began to be used, but prior to our
efforts, no one had done anything about them. Faced with the requirement for real-time musical communication
suitable at least to the guitar controller, we have developed a new protocol called ZIPL This protocol addresses
the major problems with MIDI that we have mentioned and serves the future needs of a wide variety of different
controllers and performance situations.

The ZIPI protocol is designed on the philosophical base of contemporary practice in high-speed digital
communications, and conforms to the OSI layered network model. At the physical layer, we define an electrical
specification and a 250 kbaud (minimum) serial stream. At the data link layer, we use a token-ring architecture
for deterministic performance. In complex setups where there are several controllers and synthesizers, these
instruments would normaily be connected in a star topology through a hub which would implement the ring and
maintain reliable communications even in the presence of transmission errors and events where instruments go
on-line or off-line during a performance.

The main content of the ZIPI protocol is at the application layer of the OSI model, where we define several
protocols, most importantly a Music Parameter Description Language, MPDL, for communicating real-time
music event control (McMillen, Wessel, & Wright 1994). A key feature is the concept of a hierarchical address
space. Control messages can be addressed to instruments, to families (of instruments), or to individual notes.
Addressability of notes is an important advance over MIDI, since it allows a single note to evolve over time,
changing its properties such as pitch, time, and amplitude, in response to ZIPT messages addressed to it.

The messages “trigger” and “release,” which start (or rearticulate) a note and stop it respectively do not in
themselves contain information about the pitch or amplitude of the note. These properties of a note are
established by other ZIPI messages that are sent before or during the note. A large number of different types of
messages are given predefined meanings (although detailed semantics are in many cases left to the
implementation, for example the mapping of the “amplitude” message value into physical units). Some message
types provide redundant ways to control the same physical parameter, for example “pitch,” specified in
semitones and fractions of semitones, and “frequency,” specified in Hertz. Timbre space is addressed by
predefined messages such as “brightness,” “Even/Odd harmonic balance,” “roughness,” “attack character,” and
by messages specifying abstract timbre space coordinates, the meaning of which is left entirely to the
implementation of individual instruments. Other messages are provided for spatial location of instruments (a
generalization of pan), for modulation (a generalization of vibrato), and for synthesizer housckeeping functions
such as defining the priority of a note for allocation to available instrument voices.

In addition to messages whose semantics are defined in terms of parameters that affect the way a
synthesizer is to generate note sounds, another class of messages is provided whose semantics are specified in
terms of measured performer gestures. Examples of these messages include “key velocity,” “pick/bow velocity,”
“lip pressure,” “drum-head position,” “position in space” (i.e. position of a magic wand-type controller), ete. In
MIDI, there was no distinction between these two classes of message, and in practice the semantics of messages
was sometimes interpreted as if they were what we would call synthesizer control messages, sometimes as
performer gesture messages; this confusion was the cause of some cases of inconsistent behavior with MIDL

| Simpésio Brasileiro de Computacdo e Musica 241

ZIPI provides communication bandwidth and control flexibility able to be the basis for whole orchestras
combining many heterogeneous controllers and synthesizers, and supports a vast range of expressive
possibilities for many new types of electronic music performance environments.

Conclusions

We have developed a new generation of electronic music instruments allowing an unprecedented degree of
control and expressiveness. A guitar controller with integrated sound synthesis and processing capabilities will
be the first member of this family. It will be released as a commercial product early in 1995.

To support our new control concepts and sound generation methods, we are also introducing a new
protocol for digital communication between instruments in a performance network. These two elements are
enabling technologies, allowing electronic instruments to enter a new age of diverse musical creativity.

References

International MIDI Association (IMA) (1988) MIDI 1.0 Detailed Specification, Document Version 4.0, Los
Angeles, CA, IMA.

Loy, G. (1985) Musicians Make a Standard: The MIDI Phenomenon. Computer Music Journal , 9(4), 8-26.

McMillen, K. (1994). ZIPI-Origins and Motivations. Computer Music Journal, 18(4). [in press]

McMillen, K. Wessel, D. & Wright, M. (1994). ZIPI's Music Parameter Description Language. Computer Music
Journal, 18(4). [in press]

McMille]n, K. Simon, D. & Wright, M. (1994). ZIPI Network Summary. Computer Music Journal, 18(4) [in
press

Moore, F. R. (1988). The Dysfunctions of MIDI Computer Music Journal 12(1), 19-28. In Deutsch, D., ed. The
Psychology of Music 2nd Edition, Academic Press.

Scholz, C. (1991). A proposed extension to the MIDI specification concerning tuning. Computer Music
Journal., 15(1), 49-54,

Wright, M. (1994). ZIPI Examples. Computer Music Journal, 18(4). [in press]

Wright, M. (1994). MIDI/ZIPI Comparison. Computer Music Journal, 18(4). [in press]

Wright, M. (1994). ZIPI Frequently Asked Questions. Computer Music Journal, 18(4). [in press]

Acknowledgements

1 would like to acknowledge the creators and implementers of the concepts reported here: Keith McMillen,
Chief Scientist, Gibson Western Innovation Zone Labs (G-WIZ), and the staff of G-WIZ, especially Marie
Baudot; and David Wessel and the staff of the Center for New Music and Audio Technology (CNMAT), music
department, University of California at Berkeley.

I Simpésio Brasileiro de Computacio e Misica 243

Virtual Musical Instruments:
Accessing the Sound Synthesis Universe as a Performer.

AXEL MULDER
School of Kinesiology
Simon Fraser University
Burnaby, B.C., V5A 156 Canada

Abstract

With current state-of-the-art human movement tracking techology it is possibie to
represent in real-time most of the degrees of freedom of a (part of the) human body.
This allows for the design of a virtual musical instrument (VMI), analogous to a
physical musical instrument, as a gestural interface, that will however provide for
much greater freedom in the mapping of movement to sound. A musical performer
may access therefore the currently unexplored real-time capabilities of sound
synthesis systems. In order to decrease the learning and adaptation needed and avoid
injuries, the design must address the musculo-skeletal, neuro-motor and symbolic
levels that are involved in the programming and control of human movement. The
use of virtual musical instruments will likely result in new ways of making music
and new musical styles.

Introduction

In figure 1 an attempt has been made to show the development of musical instruments. Acoustic
instruments transduce movements of a performer into sound. The performer has limited timbral control and a
limited gesture set that can hardly be adapted to the performer's needs. Electroacoustic instruments do not allow
for more gestures or adaptivity, but increase the range of sounds compared to the acoustic instrument without
the electronic gadgetry. Normally this increased range of sounds is an extension of the sounds that are produced
with the original acoustic instrument. .

Examining electronic musical instruments it can be seen that gestural interfaces for sound synthesis
systems have largely been copied from traditional physical musical instrument designs (e.g. MIDI keyboard or
piano, MIDI guitar, Yamaha wind controller, percussion controller, Zeta violin, MIDI accordion etc., see
Pressing (1992)). Many performing musicians are dissatisfied with the expressive capabilities of these
instruments when compared with traditional acoustic instruments. On the one hand this dissatisfaction can be
attributed to limited resolution, accuracy and responsiveness of the gestural interface, on the other hand the
sound sysnthesis system that is driven by the gestures, usually via MIDI, is not adequate to satisfy the auditive
needs of the performer. Another important point that is seldomly addressed, is that such gestural interfaces do
not allow for real-time control during performances of a number of parameters for sound synthesis that were not
available on traditional physical musical instruments.

With current state-of-the-art human movement tracking techology it is possible to represent in real-time
most of the degrees of freedom of a (part of the) human body. This allows for the design of a virtual musical
instrument (VMI), analogous to a physical musical instrument, as a gestural interface, that will however provide
for much greater freedom in the mapping of movement to sound. A musical performer may access therefore the
currently unexplored real-time capabilities of sound synthesis systems. Although it would be possible to build a
simulation of, for example, a guitar as a VMI it may be more interesting and desirable to design a VMI that
matches as closely as possible the capabilities of the human performer, such that less learning and adaptation is
needed and injuries avoided.

244 XIV Congresso da Sociedade Brasileira de Computacio

In order to achieve these ergonomic goals the musculo-skeletal, neuro-motor and semiotic issues that are
involved in the design of a VMI must be addressed. It is advisable to limit the scope of this research by defining
a class of VMI's that are controlled only through movements of the upper limbs and which is perceived mainly
through kinaesthetic and auditory feedback as an "audio-kinaesthetic object", thereby leaving out tactile and force
feedback. However, some indirect tactile (e.g. fingers touching each other) and visual (e.g. seeing your own
fingers) feedback remains available.

It is likely that the resulting virtual instrument cannot be physically constructed, so that, in the case of
music, new ways of making music and musical styles may develop. Some of these numerous possibilities for
musical performers to change the presentation of musical ideas and the re-integration of music with dance will
be discussed.

Electronic musical instruments: Overview of experiments with new controllers

Due to the development of (computer) technology, many musicians who were technically oriented, have
experimented with these technologies to change various aspects of musical performance. On the one hand much
effort has gone into designing new ways of sound generation. On the other hand some effort has gone into
designing new controllers, physical devices that implement a motion sensing technology and translate that
motion, generated by the performer, into a (MIDI) signal that in its turn controls a sound synthesis device.
Tables 1a to 1d list some of the people and their designs, classified mostly by the human movement tracking
method. In the case of use of a glove for conducting purposes this classification scheme does not work perfectly
as one can see. In essence this shows the difficulty in providing clear boundaries in the levels of control of
human movement and the levels operating in auditory perception.

At any rate, these new musical instrument designs were hardly or not at all based on a model of human
performance, nor on a model of human auditory perception, let alone their relation. Therefore, most of these
designs are not more attractive to use for a performer, more than traditional acoustic instruments. In effect, most
of these designs were mainly concerned with the implementation of the technology instead of exploring the use
of psychomotor parameters in the human system.

Table 1a. An overview of recent experiments with new musical instrument designs.

Author Musical instrument
Rubine & McAvinney (1990)

Videoharp MIDI controller (optical sensing of
fingertips)

Radiodrum MIDI controller (short range EM sensing)
Airdrum MIDI controller (acceleration sensitive)
CORDIS modular feedback keyboard, physical
modeling approach to musical instruments
Sweatstick MIDI controller (stick with butons a.0.)
‘Web MIDI controller (straingauge based)

Hands MIDI controller (buttons, ultrasound ranging
and mercury switches)

Steve O'Hearn, Rhode Island School of design, USA, | Design of a new stick-like MIDI controller, with
see Moog (1989) pressure sensitive buttons)

Matthews & Schloss (1989)
Palmtree Instruments Inc., La Jolla CA, USA
Cadoz, Luciani & Florens (1984)

Ray Edgar, STEIM, Amsterdam, the Nethertands
STEIM, Amsterdam, the Netherlands
Michel Waisvisz, STEIM (see Krefeld, 1990)

Table 1b. An overview of recent experiments with devices for conducting.

Author Conducting device

Keane & Gross (1989) MIDI baton (AM EM sensing)

Bertini & Carosi (1992) Light baton (LED sensed by CCD camera)

Don Buchia Lightning MIDI controller (Infrared LED sensing)
Morita, Hashimoto & Ohteru (1991) Dataglove for conducting a MIDI orchestra
Machover & Chung (1989) Exos DHM glove for conducting MIDI devices,
hyperinstrument concept.

| Simpésio Brasileiro de Computacio e Misica

245

Table lc. An overview of recent experiments with new musical instrument designs involving gloves.

Author

Glove application

Pausch & Williams (1992)

Fels & Hinton (1993)

CNMAT, Berkeley; Scott Gresham-Lancaster,
Berkeley; Mark Trayle, San Fransisco; James
McCartney, University of Texas; Thomas Dougherty,
Stanford University; William J. Sequeira, AT&T,
Tom Meyer, Brown University; Rob Baaima,
Amsterdam; and probably many others

Joel Ryan, Laetitia Sonami

Tom Zimmerman, VPL; Banff Center for the Arts,
Calgary, Canada; Brian Karr & Lucinda Hughey,
Seattle WA and probably others

Gustav's Party

Handmotions control speech synthesizer
GloveTalk: CyberGlove controls a speech synthesizer
Powerglove as a MIDI controller

Hall-effect glove as a MIDI controller
Dataglove as a controller

Virtual reality rock band using a.0. Datagloves as
MIDIcontrollers

Table lc. An overview of experiments with new musical instrument designs involving whole body movements.

Author

Motion to sound design

Leon Theremin (see Vail, 1993)
Chabot (1990)

Bauer & Foss (1992)
Leslie-Ann Coles, USA
Coniglio (1992)

Yamaha Corp., Japan

David Rokeby, Toronto, Canada

Fred Kolman, Amsterdam, the Netherlands

Camurri (1987)

Capacitively coupled motion detector controls
electronic oscillator

Ultrasound ranging to detect whole body movements
and to control MIDI devices

GAMS: Ultrasound ranging to detect whole body
movements and to control MIDI devices

Bodysuit performance during CHI 92

MIDIDancer bodysuit / Interactor mapping software
MIBURI: arm gestures, finger buttons to MIDI
translation

Very Nervous System: video image processor
translates movement into MIDI

Video image processor translates movement into
MIDI

Costel opto-electronic human movement tracking
system controls a knowledge based computer music
system

Table 1d. An overview of experiments with new musical instrument designs involving bioelectric signals.

Author

Bioelectric design

Knapp & Lusted (1990)

Chris van Raalte / Ed Severinghaus, San Fransisco
CA, USA

Rosenboom (1990), Richard Teitelbaum, Germany,
Pjotr van Moock, the Netherlands and probably others

Biomuse EMG signals control a DSP
BodySynth MIDI controller

EEG/EMG interface to synthesizer setup

| Simpésio Brasileiro de Computacio e Misica 247

246 XIV Congresso da Sociedade Brasileira de Computacio
Limited timbral control, gesture set and Electronically modified
user adaptivity. Sound source is located string sounds
at the gesture. 4

3
>> Acoustic
Instrument
Movement Space ,
’
/
Electro-
Acoustic
Instrument Sound Space
’
/

Expanded timbral control, though hardly
accessible in real-time and discretized ; gesture
set and adaptivity still limited. Sound source

’
E.g. gestures
associated with a

t
i
I
'
1

I
1
i

y .
eyboa\nd can be displaced. fo\gm;;r 1Ing
Electronic = /
Mausical
Instrument
(MID1, CV)

>

E.g. synth sounds - - - - - Sound Space

E.g. wind sounds -~~~

/ Expanded real-time, continuous
; timbral control; gesture set unlimited,
' tactile/force feedback problematic.

All possible human
moveinents
v Virtual
Musical
Instrument

Any gestures or
movements can be mapped

to an
Movement Space y class of sounds.

All possible audible sounds -~ ’

Fig. 1. The development of musical instruments.

In addition to the above designs an innumerable number of setups has been created that involve (electro-)
acoustic instruments equipped with electronics, on the instrument or as signal processors, or computers. Such
setups are generally called performances with live electronics. As the input or controller is usually not the
innovative component, but the way in which the sounds are processed or generated in such setups, no further
attention wull be paid in this paper to such designs. Also, setups where the computer, via keyboard or mouse, is
the main controlling device will not be further considered here.

Psychomotor issues

Pressing (1990) addresses musical instrument design from an ergonomic point of view. Although his work
is very useful and important, it is not based upon work in the field of motor control, but more on common
musical instrument design knowledge and performance experience. The field of motor control specifically aims
to provide models of human movement through empirical evidence.

Human movement control can be conceived of as taking place at musculo-skeletal, neuro-motor and
symbolic levels, where each of these levels interact. So far gestural interfaces have mainly addressed the
musculo-skeletal level (e.g. number of degrees of freedom, movement range, bandwith and resolution), whilst
some work has been done at the symbolic level (e.g. American Sign Language recognition). Neuro-motor
aspects that can be included in gestural interfaces, although they are mostly unresolved as yet, are amongst
others the control of speed and accuracy and their trade-off, the parameters that specify the movement at the
neuromotor level (i.e. not joint angles may be relevant parameters in formulating a gesture but higher level
parameters), the various phases during a movement, each of them with different control parameters and timing
and the various internal representations of the movement and their transformations. Central to the neuromotor
level is the concept of a motor program.

Additionally, the identification and structure of the audio-motor channel, similar to the visuo-motor channel
of Jeannerod (1990), may provide a significant framework. For instance, what is the relation of the visuo-motor
channel and the audio-motor channel. At a low level, via perturbation experiments in singing, ¢.g. perturbed
feedback of pitch (shifted pitch), timbre (formant remapping), or timing (delayed signals), a definition of the
lower level aspects of the audio-motor channel may be obtained. The recognition of gestures has up to now been
implemented with engincering techniques that describe the movement in physical terms at a musculo-skeletal
level. Recognition in terms of neuromotor and symbolic level models of human movement is as yet
unimplemented, although some work has been done using a connectionist paradigm (see below).

Palmer & van de Sande (1993) and Palmer (1989) are concerned with music theories and linguistic theories
in the way they relate syntactic (structural) representations to phonetic (sounded) representations. The object of
their studies is the ordering and manipulation of "sound objects” (phonemes, phones) as symbols, and not the
creation of the sound objects (with their pitch, duration, volume, and timbre functions) themselves. Shaffer
(1989), also concerned with high level aspect of motor programs, discusses the implementation of music
performance by a robot. Sloboda, (1985) discusses three basic aspects of music performance: sight reading (how
are performance plans acquired), performance after repeated exposure or rehearsal (what is the role of feedback in
performance plans) and expert or skilled performance. Clynes & Nettheim (1982) work addresses emotion and
meaning of human movement. Baily (1985) studied movements patterns of African music players. His work
investigates a.0. whether the spatial properties of an instrument may influence the shape of the music played on
1.

Whilst most of this research is done by researchers in behavioural science, approaches by choreographers
may be helpful too. Their efforts include the definition of dance notation systems, e.g. Labanotation which
specifically addresses the concept of effort in movement. This can be conceived of as a approach to approximate
psychomotor parameters. The concept of effort, as used in labanotation, has been further explored in a musical
instrument design context by Ryan (1992) and Ryan (1991).

It is interesting to note that the computer music community has paid a great deal of attention to production
of sound directly from abstract thought by implementing a model of cognition, using e.g. artificial intelligence
technology. These models did usually only address the higher levels involved in the performance of music, in
contrast to human music performers, who physically effectuate the performance - with effort. Also, such models
only apply in cases where the musical style is well defined and formalized, and does not apply in situations that
involve a great deal of improvisation. Pressing (1984) outlines some of the cognitive aspects in improvisation.

248 XIV Congresso da Sociedade Brasileira de Computacao

VMI's: the future ?

Erom the above and figure 1, a VMI is characterised by at least two features. Any gesture can be used to
control the sound synthesis process and the mapping is entirely programmable and limited by the sound
synthesis model only. In addition, the mapping possibly incorporates motor control or ergonomic principles and
may be adaptive to the user. In other words, the shape and sound generation and their relation of a VMI are not
defined by physical laws necessarily, but can be arbitrarily defined, most likely by ergonomic principles. Due to
the fact that music can be performed at various levels a VMI can be conceived of in various ways. At a high
level, a virtual orchestra, explored by Morita et al (1991), comes to mind. At a low level Gibet (1990} explored
virtual drumming by modeling a human arm and a vibrating surface (using the synergetics approach of Haken).
Stephen Pope at CCRMA, Stanford CA, USA, explores virtual sound objects and Bolas & Stone (1992)
explored a virtual theremin and a virtual drum, using virtual reality technology. Obviously the relation between
dance and music can become very tight using the above ideas (Mulder, 1991). Ungvary et al (1992) presented
their system NUNTIUS, which provides direct data transfer and interpretation between dance and music. Their
system implements high level relations between dance and music using amongst others labanotation.

The author's work included experiments with an instrumented bodysuit that registered human joint angles.
Two performances were implemented in 1993. In one performance the values of the joint angles of the performer
(Egmont Zwaan) were used to drive a Lexicon LXP 5 effects processor that processed the voice of the performer.
During the performance, the performer lost track of what he was actually controlling, i.e. he was more involved
with his movements than the aural result and/or there were too many parameters to control (more learning is
needed). Also, the mapping was too simple, too direct, i.e. some parameters were 00 sensitive to movement.
There was no compensation for interaction between various acoustic effects, that resulted in changing
sensitivities of the parameters. Last but not least the LXP 5 had some problems processing the amount or
combinations of MIDI data.

In the other performance only a few joint angle values of the author's movements were used to drive the
effects processor. The performance included Mari Kimura playing a Zeta MIDI violin and a dancer (Anita
Cheng). The effects processor transformed the violin signals. The dancer interacted physically with the author
and symbolically with the violin player, so that all performers were communicating. The most interesting result
in the context of this paper was that the author was dancing and not playing an instrument - while in fact he
was. This illustrates the possibilities for merging dance and music as one art form, as it used to be (and still is)
for many African tribes.

The translation of the joint angles into the parameters of the LXP 5 was simple - there was no algorithm
involved, Due to this simple mapping the VMI was not very intuitive, However, the aim of user adaptivity was
achieved: it was possible to map any movement to any parameter of the LXP 5. Also the real-time capabilities
of the sound processing device were fully used. Furthermore it became very clear that human movement tracking
is a hard problem (Mulder, 1994).)

Other ideas that may be worthwhile exploring are control of a singing or speech synthesizer by hand or arm
gestures or even whole body movements. Lee & Wessel (1992) have built systems that use artificial neural nets
to implement a control structure that adapts to nonlinear human behaviour. Similarly, Fels & Hinton (1993)
have used neural networks to achieve translation of hand shape and position to articulated speech. The speech
synthesizer may also be replaced by a granular synthesizer processing a text sample, a vocoder or an effects
processor (as above) with voice input. It would be possible then for instance to present a poem with very
strange and strong expression, both gesturally and acoustically. Currently the author is investigating use of an
instrumented glove to control a granular synthesis system developed by Barry Truax and Harmonic Functions in
Vancouver, BC, Canada.

Another obvious performance idea would be to use an instrumented suit to control percussive synthesizers.
The fact that disco, house, African and many other dance forms involve mostly repetitive movements may allow
for interpretation or recognition in terms of the so-called dynamic pattern approach in human movement control.
As for the performer, he or she might become involved in an intense audio-kinaesthetic experience.

A future musical ensemble may consist of a drummer or percussive controller, various timbral (sound)
controllers, various melodic controllers (musical structure controllers), a spatialization controller and an effects
controller. All the movements of these performers would be choreographed to achieve a maximum performance
effect.

| Simpésio Brasileiro de Computacio e Mdsica 249

References

Baily, J. (1985). Music structure and human movement. In: Howell, P., Cross, 1., (editors), Musical structure
and cognition, 237-258. London, UK: Academic Press.

B;i;e;:iw. & Foss, B. (1992). GAMS: an integrated media controller system. Computer Music Journal, 16 (1),

Bertini, G.. & Carosi, P. (1992). The light baton: a system for conducting computer music performance.
Proceedings International Computer Music Conference, San Jose, California, USA, 73-76. San Fransisco CA
USA: International Computer Music Association. ’

Bolas, M. & Stone, P. (1992). Virtual mutant theremin. Proceedings International Computer Music
Conference, San Jose, California, USA, 360-361. San Fransisco CA, USA: International Computer Music
Association.

C.adoz, C., Luciani, A.' & Florens, J-L. (1984). Responsive input devices and sound synthesis by simulation of
mstrumental mechanisms: The CORDIS system. Computer Music Journal, 8 (3), 60-73.

Caryxum‘, A. et al (1987). Interactions between music and movement: A system for music generation from 3D
animations. Proceedings of the 4th international conference on event perception and action, Trieste.

Chabot, X. (1990). Gesture interfaces and a software toolkit for performance with electronics. Computer Music
Journal,, vol 14 no 2 p 15-27.

Clym.:s, M. & Nettheim, N. (1982). The living quality of music: neurobiologic basis of communicating
feeling. In: Clynes, M., (editor), Music, mind and brain: the neuropsychology of music, 47-82. New York
USA: Plenum Press. Y

Coniglio, M. (1992). Introduction to the Interactor language. Proceedings International Computer Music
Conference, San Jose, California, USA, 170-177. San Fransisco CA, USA: International Computer Music
Association.

Fels, S.S: & Hinton, G.E. (1993). Glove-talk: A neural network interface between a dataglove and a speech
s-ynthesxzer, IEEE Transactions on neural networks, 4 (1), 2-8.

Glbet,.S. & Marteau, P.-F. (1990). Gestural control of sound synthesis. Proceedings International Computer
Music Conference, Glasgow, UK, 387-391. San Fransisco CA, USA: International Computer Music
Association,

Jeannerod, M. (1990) The neural and behavioural organization of goal directed movements. New York, USA:
Oxford University Press.

Keane, D. & Grgss, P. (1989). The MIDI baton. Proceedings International Computer Music Conference,
Columbus, Ohio, USA. San Fransisco CA, USA: International Computer Music Association.

Knapp, R.B. & Lusted, H. (1990). A bioelectric controller for computer music applications. Computer Music
Journal, 14 (1), 42-47.

Krefeld, V. (1990). The Hand in the Web: An interview with Michel Waisvisz. Computer Music Journal,, 14
(2), 28-33.)

Lee, M & Wessel, D. (1992). Connectionist models for real-time control of synthesis and compositional
algorithms. Proceedings International Computer Music Conference, San Jose, California, USA, 277-280. San
Fransisco CA, USA: International Computer Music Association.

Machgv'er, T. & Chung, J. (1989). Hyperinstruments: Musically intelligent and interactive performance and
creativity systems. Proceedings International Computer Music Conference, Columbus, Ohio, USA. San
Fransisco CA, USA: International Computer Music Association.

Mathe'ws, M.‘& Schloss A. (1989) The radiodrum as a synthesis controller. Proceedings International Computer
Music Conference, Columbus, Ohio, USA. San Fransisco CA, USA: International Computer Music
Association.

Mogg, B. (1989). An industrial design student's MIDI controller. Keyboard, January, 108-109.

Morita, H., Hashimoto, S. & Ohteru, S. (1991). A computer music system that follows a human conductor.
IEEE Computer, July, 44-53.

Mulder, A.G.E. (1991). Viewing dance as instrumental to music. Interface 4 (2), 15-17. Columbus, Ohio,
USA: ACCAD, Ohio state university.

Mulder, A.G.E. (1994). MyGlove: A glove input device based on the PowerGlove flex sensors. PCVR, 16.

Palmer, C., van de Sande, C. (1993). Units of knowledge in music performance. Journal of experimental

psychology: learning,

250 XIV Congresso da Sociedade Brasileira de Computacdo

memory and cognition, 19 (2), 457-470.

Palmer, C. (1989). Mapping musical thought to musical performance. Journal of experimental psychology:
human perception and performance, 15 (12), 331-346.

Pausch, R. & Williams, R.D. (1992). Giving CANDY to children: user tailored gesture input driving an
articulator based speech synthesizer. Communications of the ACM, 35 (5), 60-66.

Pressing, J. (1990). Cybernetic issues in interactive performance systems. Computer Music Journal, 14 (1),
12-25.

Pressing, J. (1992). Synthesizer performance and real-time techniques. Madison, Wisconsin, USA:
A-R editions.

Pressing, J. (1984). Cognitive processes in improvisation. In: Crozier, W.R., Chapman, A.J., Cognitive
processes in the perception of art, 345-363. Amsterdam, The Netherlands: Elsevier Science Publishers.

Rosenboom, D. (1990). The performing brain. Computer Music Journal,, vol 14 no 1 p 49-66.

Rubine, D. & McAvinney, P. (1990). Programmable finger tracking instrument controllers. Computer Music
Journal,, 14 (1), 26-41.

Rubine, D, & McAvinney, P. (1990). Programmable fingertracking instrument controllers. Computer Music
Journal,, vol 14 no 1 p 26-41.

Ryan, J. (1992). Effort and expression. Proceedings International Computer Music Conference, San Jose,
California, USA, 414-416, San Fransisco CA, USA: International Computer Music Association.

Ryan, J. (1991). Some remarks on musical instrument design at STEIM. Contemporary music review, 6 part 1,
3-17.

Shaffer, L.H. (1989). Cognition and affect in musical performance. Contemporary music review, 4, 381-389.

Sloboda, LA. (1985). The musical mind: the cognitive psychology of music. Oxford, UK: Clarendon press.

Ungvary, T., Waters, S. & Rajka, P. (1992). NUNTIUS: A computer system for the interactive composition
and analysis of music and dance. Leonardo, 25 (1), 55-68.

Vail, M. (1993). It's Dr. Moog's traveling show of electronic controllers. Keyboard, March, 44-49.

Indice por Autor

Aguiar, G. L., 3
Arcela, A., 33

Ballista, A. L. C., 139
Barbar, K., 99
Beckenkamp, F. G., 189
Beurivé, A., 99
Brandédo, M. C. P., 39

Cabral, E. E., 79
Castro, R. R. F., 155
Cerana, C., 21

Choi, A., 27
Christiansen, A. S., 225

Desainte-Catherine, M., 99
Engel, P. M., 189

Farra, R. D., 185
Ferneda, E., 177
Fritsch, E. F., 107

Giola, O. G., 147

Hitt, D., 133
Hodges, R., 237

Jaffe, D. A., 53, 63

Lazzetta, F., 231
Lo, Y., 133
Loureiro, C. A. J., 39

Malt, M., 125
Manzolli, J., 45
Marar, J. F., 9
Martins, A. J. B., 139

251

Meireles, A. O., 73

Miranda, E. R., 203

Moraes, M. R., 83

Morales, E., 169
Morales-Manzanares, R., 169
Moreira, E. 5., 9

Mulder, A., 243

Pachet, F., 195
Pimenta, M. S., 139
Pope, S. T., 161
Porcarro, N., 63
Prignano, 1., 15

Ramalho, G., 217
Rueda, C., 91

Scipio, A., 15
Silva, C. A. P., 177
Silva, D. A. B., 121
Silva, H. M., 177
Smith, J. O., 63

Teixeira, L. M., 177
Viceari, R. M., 107
Zannon, T. C., 39

